We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence, and Reynolds number. An increase in wall slippage causes a reduction in the number of higher-order dipoles created. This leads to a decrease in the magnitude of the enstrophy peaks and reduces the dissipation of energy. The dissipation of the energy and its relation to the enstrophy are also investigated theoretically, confirming quantitatively how the presence of slip modifies this relation.
To determine the relationship between herpes simplex virus 1, 2 and neurological disorders, sixty samples from patients with neurological diseases were collected (40 patients with Multiple sclerosis and 20 patients with Parkinson’s disease) all of whom attended both the Neurological science Hospital as well as the Neuropathology consultation Department in Baghdad Hospital In Iraq. The samples were collected in the time frame between November 2017 and April 2018. The ages of the patients that were investigated were between (17-76) years and compared to a control group consisting of 25 samples collected from apparently healthy individuals. All the studied groups were subjected to the measurement of anti-HSV 1, 2 IgG antibodies by the means
... Show Morefication of benzaldehyde (C6H5CHO) and O- amino aniline O-C6H4(NH2)2 in ethanol with 8- Hydroxyquinoline (8HQ) . Formed compounds were acquired of 1:1:2 molar proportion reactions for metal ions and ligands (L) and 2(8HQ) during reaction for MCl2 .nH2O salt products complexes conformable into the forms [M(L)(8HQ)2] ,where M = Mn(II),Co(II) and Ni(II). Whole the compounds were identified during the basis of their; FT-IR and U.V spectrum, melting point, molar conduct, identify of the percentage from the metal at the complexes via flame (AAS), C, H and N content of the Schiff base (L) and metal complexes were analysis and magnetic susceptibility menstruations. A hexagonal coordinated metal complexes were proposed to the separated complexes of
... Show MoreNew complexes of first series of transition metals with P-amino benzene dithiocarbamate of the general formula [M(PABdtc)2] and [ M(PABdtc)2(L)n] M=Fe( ІІ ),Co( ІІ ),Ni( ІІ ) ,Cu(ІІ) and Zn (ІІ). PABdtc = Paraamino benzene dithiocarbamate ,n=2 when L= Py,ɣ-Pic,iso qunoline ,3,5lutidine n=1when L=1,10-phenanthroline, en, 2,-2bipy.and the type(R)4N[Ni(PABdtc)3] R= methyl, ethyl are prepared. Physico chemical characterization of these complexes was applied using magnetic susceptibility measurements, molar conductance , Infrared and electronic spectra, Metal content measurements, molar conductance indicate complexes of the type [M(PABdtc)2] and [M(PABdtc)2(L)n] are non-electrolyte
... Show MoreA new Schiff base, 2-N( 4- N,N – dimethyl benzyliden )5 – (p- methoxy phenyl) – 1,3,4- thiodiazol ,and their metal complexes Cu (Π) ,Ni (Π), Fe (III) , Pd (Π) , Pt (IV) , Zn(Π) ,V(IV) and Co (Π) , were synthesized. The prepared complexes were identified and their structural geometries were suggested by using flam atomic absorption technique , FT-IR and Uv-Vis spectroscopy, in addition to magnetic susceptibility and conductivity measurements. The study of the nature of the complexes formed in ethanol solution , following the mole ratio method , gave results which were compared successfully with those obtained from the isolated solid state studied. Structur
... Show MoreThe synthesis of ligands with N2S2 donor sets that include imine, an amide, thioether, thiolate moieties and their metal complexes were achieved. The new Schiff-base ligands; N-(2-((2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio)-acetamide (H2L1) and N-(2-((2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio) acetamide (H2L2) were obtained from the reaction of amine precursors with 1,4-dithian-2-one in the presence of triethylamine as a base in the CHCl3 medium. Complexes of the general formula K2<
The ligand 2-[1-(1H-indol-3-yl)ethylimino) methyl]naphthalene-1-ol, derived from 1-hydroxy-2-naphthaldehyde and 2-(1H-indol-3-yl)ethylamine, was used to produce a new sequence of metal ions complexes. Thus ligand reactions with NiCl2.6H2O, PdCl2, FeCl3.6H2O and H2PtCl6.6H2O were sequentially made to collect mono-nuclear Ni(II), Pd(II), Fe (III), and Pt(IV). (IR or FTIR), Ultraviolet Reflective (UV–visible), Mass Spectra analysis, Bohr-magnetic (B.M.), metal content, chloride content and molar conductivity have been the defining features of the composites. The Fe(III) and Pt(IV) complexes have octahedral geometries, while the Ni(II) complex has tetra
... Show More