We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence, and Reynolds number. An increase in wall slippage causes a reduction in the number of higher-order dipoles created. This leads to a decrease in the magnitude of the enstrophy peaks and reduces the dissipation of energy. The dissipation of the energy and its relation to the enstrophy are also investigated theoretically, confirming quantitatively how the presence of slip modifies this relation.
The objectives of this study revolve around identifying the extent of funding impact on the future of the printed Iraqi press, and whether it threatens their chances of survival, stating the extent of technological development on the income of the printed newspaper, and identifying the causes of the financial crisis on the newspaper.
This research is classified as descriptive research, and the researcher used the survey method, and adopted the questionnaire of the views of the contactors, in five Iraqi newspapers (morning - extent - time - the way of the people - the call).
The research community included (68) respondents, whereby the comprehensive inventory method was used to define the research community, and the researcher used
Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite ele
... Show MoreObjective: This study evaluated the effect of immediate dentin sealing on the marginal adaptation of lithium disilicate overlays with three different types of resin-luting agents: preheated composite, dual-cure adhesive resin, and flowable composite. Materials and Methods: Forty-eight maxillary first premolars of similar size were prepared with a butt joint preparation design. The teeth were separated into two primary groups, each with twenty-four teeth: Group DDS: Delay dentin sealing (non-IDS) teeth were not treated. Group IDS: dentin sealing was applied immediately after teeth preparation. Each group was subsequently separated into three separate subgroups. Subgroups (DDS+Phc, IDS+Phc): cemented with preheated composite (Enamel plus HRi,
... Show MoreThe main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and im
... Show MoreBackground/objectives: To study the motion equation under all perturbations effect for Low Earth Orbit (LEO) satellite. Predicting a satellite’s orbit is an important part of mission exploration. Methodology: Using 4th order Runge–Kutta’s method this equation was integrated numerically. In this study, the accurate perturbed value of orbital elements was calculated by using sub-steps number m during one revolution, also different step numbers nnn during 400 revolutions. The predication algorithm was applied and orbital elements changing were analyzed. The satellite in LEO influences by drag more than other perturbations regardless nnn through semi-major axis and eccentricity reducing. Findings and novelty/improvement: The results demo
... Show MorePower-electronic converters are essential elements for the effective interconnection of renewable energy sources to the power grid, as well as to include energy storage units, vehicle charging stations, microgrids, etc. Converter models that provide an accurate representation of their wideband operation and interconnection with other active and passive grid components and systems are necessary for reliable steady state and transient analyses during normal or abnormal grid operating conditions. This paper introduces two Laplace domain-based approaches to model buck and boost DC-DC converters for electromagnetic transient studies. The first approach is an analytical one, where the converter is represented by a two-port admittance model via mo
... Show MoreThe turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T
... Show More