Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time of 240 min, 5 g/L of dosage, initial concentration of 25 mg/L, and a temperature of 45 °C. The removal percentage of TEC under the optimum condition was 96%. Thermodynamic analysis indicated that the removal efficiency was slightly increased with temperature depending on the positive value of Δ𝐻°, thus indicating that the adsorption phenomenon was endothermic. The Langmuir model fitted the study (R2 = 0.998), demonstrating that the adsorption sites were homogenous. The experimental results were best matched with the second-order kinetic model, implying that chemisorption was the primary process during the adsorption process. Compared to previous research and based on the value of qmax (15.60 mg/g), the biomass was suitable for TEC removal.
Extraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p
... Show MoreCoated sand (CS) filter media was investigated to remove phenol and 4-nitrophenol from aqueous solutions in batch experiments. Local sand was subjected to surface modification as impregnated with iron. The influence of process variables represented by solution pH value, contact time, initial concentration and adsorbent dosage on removal efficiency of phenol and 4-nitrophenol onto CS was studied. Batch studies were performed to evaluate the adsorption process, and it was found that the Langmuir isotherm effectively fits the experimental data for the adsorbates better than the Freundlich model with the CS highest adsorption capacity of 0.45 mg/g for 4-nitrophenol and 0.25 mg/g for phenol. The CS was found to adsorb 85% of 4-nitrophenol and
... Show MoreThe current study investigated the stability and the extraction efficiency of emulsion liquid membrane (ELM) for Abamectin pesticide removal from aqueous solution. The stability was investigated in terms of droplet emulsion size distribution and emulsion breakage percent. The proposed ELM included a mixture of corn oil and kerosene (1:1) as a diluent, Span 80 (sorbitan monooleate) as a surfactant and hydrochloric acid (HCl) as a stripping agent without utilizing a carrier agent. Parameters such as homogenizer speed, surfactant concentration, emulsification time and internal to organic volume ratio (I/O) were evaluated. Results show that the lower droplet size of 0.9 µm and higher stable emulsion in terms of breakage percent of 1.12 % were
... Show MoreThe current study investigated the stability and the extraction efficiency of emulsion liquid membrane (ELM) for Abamectin pesticide removal from aqueous solution. The stability was investigated in terms of droplet emulsion size distribution and emulsion breakage percent. The proposed ELM included a mixture of corn oil and kerosene (1:1) as a diluent, Span 80 (sorbitan monooleate) as a surfactant and hydrochloric acid (HCl) as a stripping agent without utilizing a carrier agent. Parameters such as homogenizer speed, surfactant concentration, emulsification time and internal to organic volume ratio (I/O) were evaluated. Results show that the lower droplet size of 0.9 µm and higher stable emulsion in terms of breakage percent of 1.12 % we
... Show MoreThis study examines the removal of ciprofloxacin in an aqueous solution using green tea silver nanoparticles (Ag-NPs). The synthesized Ag-NPs have been classified by the different techniques of SEM, AFM, BET, FTIR, and Zeta potential. Spherical nanoparticles with average sizes of 32 nm and a surface area of 1.2387m2/g are found to be silver nanoparticles. The results showed that the ciprofloxacin removal efficiency depends on the initial pH (2.5-10), CIP (2-15 mg/L), temperature (20-50°C), time (0-180 min), and Ag-NPs dosage (0.1-1g/L). Batch experiments revealed that the removal rate with ratio (1:1) (w/w) were 52%, and 79.8% of the 10 mg/L of CIP at 60, and 180 minutes, respectively with optimal pH=4. Kinetic models for adsorpti
... Show MoreThe removal of fluoride ions from aqueous solution onto algal biomass as biosorbent in batch and continuous fluidized bed systems was studied. Batch system was used to study the effects of process parameters such as, pH (2-3.5), influent fluoride ions concentration (10- 50 mg/l), algal biomass dose (0–1.5 g/ 200 ml solution), to determine the best operating conditions. These conditions were pH=2.5, influent fluoride ions concentration= 10 mg/l, and algal biomass dose=3.5 mg/l. While, in continuous fluidized bed system, different operating conditions were used; flow rate (0.667- 0.800 l/min), bed depth (8-15 cm) corresponded to bed weight of (80- 150 g). The results show that the breakthrough time increases with the inc
... Show MoreThe conductance of solu ti ons of cysteine in water at different concentrations and temperatures has been measured. These solutions obey Onsagcr equation and give linear relations especially at low concentrations. In more concentrated solutions a deviation from the equation is observed.
The molar conductivity of these solutions decreases with t he increase in concen trations at constant temperature.
The values of the ionization constants and the conductivity at infin ite
dilution for each temperature have been calcu lated.
The present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS),respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showed that the adsorption of basic dye followed Freundlich iso
... Show MoreThe present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS), respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showe
The present study aims to remove nickel ions from solution of the simulated wastewater using (Laminaria saccharina) algae as a biosorbent material. Effects of experimental parameters such as temperature at (20 - 40) C⁰, pH at (3 - 7) at time (10 - 120) min on the removal efficiency were studied.
Box-Wilson method was adopted to obtain a relationship between the above three experimental parameters and removal percentage of the nickel ions. The experimental data were fitted to second order polynomial model, and the optimum conditions for the removal process of nickel ions were obtained.
The highest removal percentage of nickel ions obtained was 98.8 %, at best operating conditions (Temperature 35 C⁰, pH 5 and Time 10 min).