Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time of 240 min, 5 g/L of dosage, initial concentration of 25 mg/L, and a temperature of 45 °C. The removal percentage of TEC under the optimum condition was 96%. Thermodynamic analysis indicated that the removal efficiency was slightly increased with temperature depending on the positive value of Δ𝐻°, thus indicating that the adsorption phenomenon was endothermic. The Langmuir model fitted the study (R2 = 0.998), demonstrating that the adsorption sites were homogenous. The experimental results were best matched with the second-order kinetic model, implying that chemisorption was the primary process during the adsorption process. Compared to previous research and based on the value of qmax (15.60 mg/g), the biomass was suitable for TEC removal.
Background: Mineral Trioxide Aggregate (MTA) and BiodentineTM cements are new materials with numerous exciting clinical applications. Both have appreciable properties which include good physical properties and the ability to stimulate tissue regeneration as well as good antibacterial effects. The aim of this study was to investigate and compare the antibacterial effects of MTA and BiodentineTM, when they were mixed with different concentrations of aqueous solutions of Black Seed extract, against Enterococcus faecalis. Materials and methods: MTA and BiodentineTMwere prepared according to the manufacturer’s instructions. The method of Mawlood was followed to prepare the Black Seed aqueous solution. Agar diffusion method on Brain Heart
... Show MoreActivated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
New technologies have risen into popularity causing the Liquid membrane techniques to evolve over other separation techniques due to its high selectivity and recovery, increased fluxes, and reduced investment and operating cost. This work focuses on extracting Methylene Blue (MB), a cationic dye using a simple BLM separation technique from its aqueous phase. It combines extraction and stripping in a single unit operation. The feed phase was an aqueous solution of MB, the solvent chosen was soybean oil for the liquid/organic membrane phase, and tri-octyl amine acted as a carrier. The strip phase was a hydrochloric acid solution for this study. A two-phase equilibrium study was done to choose the correct solvent, carrier,
... Show MoreElectro coagulation treatment was used for zinc removal from electroplating wastewater of the State Company for Electrical Industries . This wastewater, here consists zinc ions with maximum concentration in solution of 90 ppm .
The parameters that influenced the wastewater treatment are: current density in the range 1-1.4 mA/cm2, pH in the range 5-10, temperature in the range 25-45°C and time in the range 10-180 minute.
The research is a laboratory experimental type using batch system for electrical process with direct current. The cell comprised of aluminum electrode as anode and stainless steel electrode as cathode. Thirty experiments and one hundred fifty sample lab tests were carried out in this research
... Show MoreCadmium is one of the heavy metal found in the wastewater of many industries. The electrocoagulation offers many advantages for the removal of cadmium over other methods. So the removal of cadmium from wastewater by using electrocoagulation was studied to investigate the effect of operating parameters on the removal efficiency. The studied parameters were the initial pH, initial concentration, and applied voltage. The study experiments were conducted in a batch reactor with with two pairs of aluminum electrodes with dimension and 2mm in thick with 1.5 cm space between them. The optimum removal was obtained at pH =7, initial concentration = 50 mg/L, and applied voltage = 20 V and it was 90%.