The use of credit cards for online purchases has significantly increased in recent years, but it has also led to an increase in fraudulent activities that cost businesses and consumers billions of dollars annually. Detecting fraudulent transactions is crucial for protecting customers and maintaining the financial system's integrity. However, the number of fraudulent transactions is less than legitimate transactions, which can result in a data imbalance that affects classification performance and bias in the model evaluation results. This paper focuses on processing imbalanced data by proposing a new weighted oversampling method, wADASMO, to generate minor-class data (i.e., fraudulent transactions). The proposed method is based on the Synthetic Minority Over-sampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and weight adjustment to identify specific minority areas while retaining data generalization and accurately identifying patterns associated with fraudulent transactions. Experimental results obtained from two datasets with Autoencoder (AE), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) learning models show that wADASMO surpasses other oversampling methods in three evaluation metrics: accuracy at 95.6%, 98.8%, and 99.2%; detection rate at 90.4%, 93.38%, and 93.38%; and area under the curve (AUC) at 93%, 96%, and 96.3% for AE, CNN, and LSTM models, respectively.
In this study, we investigate about the run length properties of cumulative sum (Cusum) and The exponentially weighted moving average (EWMA) control charts, to detect positive shifts in the mean of the process for the poisson distribution with unknown mean. We used markov chain approach to compute the average and the standard deviation for run length for Cusum and EWMA control charts, when the variable under control follows poisson distribution. Also, we used the Cusum and the EWMA control charts for monitoring a process mean when the observations (products are selected from Al_Mamun Factory ) are identically and independently distributed (iid) from poisson distribution i
... Show MoreTo obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.
Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig
... Show More
In 2020 one of the researchers in this paper, in his first research, tried to find out the Modified Weighted Pareto Distribution of Type I by using the Azzalini method for weighted distributions, which contain three parameters, two of them for scale while the third for shape.This research compared the distribution with two other distributions from the same family; the Standard Pareto Distribution of Type I and the Generalized Pareto Distribution by using the Maximum likelihood estimator which was derived by the researchers for Modified Weighted Pareto Distribution of Type I, then the Mont Carlo method was used–that is one of the simulation manners for generating random samples data in different sizes ( n= 10,30,50), and in di
... Show MoreThis paper deals with founding an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to the convex polynomials by means of weighted moduli of smoothness of fractional order , ( , ) p f t . In addition we prove some properties of weighted moduli of smoothness of fractional order.
The regulatory authorities have implemented various standards to address the risks associated with credit facilities. One important aspect is the use of the Credit Bureau System (CBS), which plays a central role in ensuring banking soundness. Thus, the study seeks to explore the role of CBS in attaining banking soundness as a fundamental principle. The research sample consisted of three Iraqi banks spanning from 2010 to 2022. The research findings indicated that the implementation of CBS had a significant positive impact on achieving Banking Soundness (BS) rates in my bank. Furthermore, the asset quality index's value increased significantly, surpassing the standard value of 5%. It became evident that the banks needed to formulate a well-de
... Show MoreThe ration card system is a kind of support provided by the state to individuals through the provision of essential goods at subsidized prices during the period of war or crisis. For many years, the ration card was an essential source of food supplies to Iraqis, especially under the economic siege of the nineties, But after the events of 2003 and the passage of Iraq's political and economic changes required radical reforms in the ration card system according to the recipes of the International Monetary Fund. It was evident from the estimation of the demand function that the price did not have the greatest impact on this type of goods because the ration card items are subsidized by the government. There is also a
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More