Preferred Language
Articles
/
9RalVooBVTCNdQwCN5v5
Community Detection in Modular Complex Networks Using an Improved Particle Swarm Optimization Algorithm
...Show More Authors

     Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem.  In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local improvement operator to effectively discover community structure in the modular complex networks when employing the modularity density metric as a single-objective function. The framework of the proposed algorithm consists of three main steps: an initialization strategy, a movement strategy based on perturbation genetic operators, and an improvement operator. The key idea behind the improvement operator is to determine and reassign the complex network nodes that are located in the wrong communities if the majority of their topological links do not belong to their current communities, making it appear that these nodes belong to another community. The performance of the proposed algorithm has been tested and evaluated when applied to publicly-available modular complex networks generated using a flexible and simple benchmark generator. The experimental results showed the effectiveness of the suggested method in discovering community structure over modular networks of different complexities and sizes.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Improving the efficiency and security of passport control processes at airports by using the R-CNN object detection model
...Show More Authors

The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Detection of Methamphetamine using Nanobentonite as a Novel Solid Phase Extraction Column Matrix Assisted with Gas Chromatography- Mass Spectroscopy
...Show More Authors

          This study was done to evaluate a new technique to determine the presence of methamphetamine in the hair using nano bentonite-based adsorbent as the filler of extraction column. The state of the art of this study was based on the presence of silica in the nano bentonite that was assumed can interact with methamphetamine. The hair used was treated using methanol to extract the presence of methamphetamine, then it was continued by sonicating the hair sample. Qualitative analysis using Marquish reagent was performed to confirm the presence of methamphetamine in the isolate.The hair sample that has been taken in a different period confirmed that this current developing method can be used to analyzed methamphetamine. This m

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Measuring the Attribute Accuracy and Completeness for the OpenStreetMap Roads Networks for Two Regions in Iraq
...Show More Authors

The OpenStreetMap (OSM) project aims to establish a free geospatial database for the entire world which is editable by international volunteers. The OSM database contains a wide range of different types of geographical data and characteristics, including highways, buildings, and land use regions. The varying scientific backgrounds of the volunteers can affect the quality of the spatial data that is produced and shared on the internet as an OSM dataset. This study aims to compare the completeness and attribute accuracy of the OSM road networks with the data supplied by a digitizing process for areas in the Baghdad and Thi-Qar governorates. The analyses are primarily based on calculating the portion of the commission (extra road) and

... Show More
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Measuring the Attribute Accuracy and Completeness for the OpenStreetMap Roads Networks for Two Regions in Iraq
...Show More Authors

The OpenStreetMap (OSM) project aims to establish a free geospatial database for the entire world which is editable by international volunteers. The OSM database contains a wide range of different types of geographical data and characteristics, including highways, buildings, and land use regions. The varying scientific backgrounds of the volunteers can affect the quality of the spatial data that is produced and shared on the internet as an OSM dataset. This study aims to compare the completeness and attribute accuracy of the OSM road networks with the data supplied by a digitizing process for areas in the Baghdad and Thi-Qar governorates. The analyses are primarily based on calculating the portion of the commission (extr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Artificial Neural Networks Modeling of Total Dissolved Solid in the Selected Locations on Tigris River, Iraq
...Show More Authors

The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 04 2014
Journal Name
Engineering And Technology Journal
Optimization of the Time Required for Determination of the Total Dissolved Salts in Soil ‫
...Show More Authors

Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Photochemistry And Photobiology A: Chemistry
Construction of co-zeolitic imidazolate framework/Bi2WO6 heterojunction photocatalyst with improved adsorption and photodegradation of ciprofloxacin
...Show More Authors

View Publication
Scopus (25)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Wed Sep 14 2016
Journal Name
Journal Of Baghdad College Of Dentistry
Microleakage of Pit and Fissure Sealants after Using Different Occlusal Surface Preparation Techniques: An In Vitro Study
...Show More Authors

Background: The marginal seal is essential for sealant success because penetration of bacteria under the sealant might allow caries onset or progression. The aim of the present study was to estimate and compare the microleakage of pit and fissure sealant after various methods of occlusal surface preparation. Materials and methods: Thirty non-carious premolars extracted for orthodontic reasons were equally divided into three groups. In group one, occlusal fissures were opened with round carbide bur, in group two, occlusal surfaces of the teeth were cleaned with a dry pointed bristle brush and samples of group three were cleaned with a slurry of fine flour of pumice in water using rubber cup. Then fissures of all teeth were etched using 35% p

... Show More
View Publication Preview PDF
Crossref