Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local improvement operator to effectively discover community structure in the modular complex networks when employing the modularity density metric as a single-objective function. The framework of the proposed algorithm consists of three main steps: an initialization strategy, a movement strategy based on perturbation genetic operators, and an improvement operator. The key idea behind the improvement operator is to determine and reassign the complex network nodes that are located in the wrong communities if the majority of their topological links do not belong to their current communities, making it appear that these nodes belong to another community. The performance of the proposed algorithm has been tested and evaluated when applied to publicly-available modular complex networks generated using a flexible and simple benchmark generator. The experimental results showed the effectiveness of the suggested method in discovering community structure over modular networks of different complexities and sizes.
Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper (I) complex containing folic acid ligand was prepared and characterized on the basis of metal analyses, UV-VIS, FTIR spectroscopies and magnetic susceptibility. The density functional theory (DFT) as molecular modeling calculations was used to determine the donor atoms of folic acid ligand which appear clearly at oxygen atoms binding to hydrogen. Detection of donation sights is supported by theoretical parameters such as geometry, mulliken population, mulliken charge and HOMO-LUMO gap obtained by DFT calculations.
Objective: Matrix tablet approach is one of the delivery systems intended for poorly water-soluble drugs, like candesartan cilexetil (CC). CC is a class II drug used for the treatment of hypertension. Methods: Matrix tablets from (F1x to F18z) were prepared in the presence of β‑cyclodextrin. Matrix tablet formulation ensures control release of the drug and higher dissolution by β‑cyclodextrin. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) were used to study compatibility. Results: The angle of repose determination showed good flow for most of the formulas, besides having good compressibility. Weight variation test for all formulas showed accepted value. Drug content measurement sho
... Show MoreObjective: Matrix tablet approach is one of the delivery systems intended for poorly water-soluble drugs, like candesartan cilexetil (CC). CC is a class II drug used for the treatment of hypertension. Methods: Matrix tablets from (F1x to F18z) were prepared in the presence of β‑cyclodextrin. Matrix tablet formulation ensures control release of the drug and higher dissolution by β‑cyclodextrin. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) were used to study compatibility. Results: The angle of repose determination showed good flow for most of the formulas, besides having good compressibility. Weight variation test for all formulas showed accepted value. Drug content measurement sho
... Show MoreAbstract
Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model
In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe
... Show MoreMobile Ad hoc Networks (MANETs) is a wireless technology that plays an important role in several modern applications which include military, civil, health and real-time applications. Providing Quality of Service (QoS) for this application with network characterized by node mobility, infrastructure-less, limitation resource is a critical issue and takes greater attention. However, transport protocols effected influential on the performance of MANET application. This study provides an analysis and evaluation of the performance for TFRC, UDP and TCP transport protocols in MANET environment. In order to achieve high accuracy results, the three transport protocols are implemented and simulated with four different network topology which are 5, 10
... Show MoreOver the past few decades, the surveying fieldworks were usually carried out based on classical positioning methods for establishing horizontal and vertical geodetic networks. However, these conventional positioning techniques have many drawbacks such as time-consuming, too costly, and require massive effort. Thus, the Global Navigation Satellite System (GNSS) has been invented to fulfill the quickness, increase the accuracy, and overcome all the difficulties inherent in almost every surveying fieldwork. This research assesses the accuracy of local geodetic networks using different Global Navigation Satellite System (GNSS) techniques, such as Static, Precise Point Positioning, Post Processing Kinematic, Session method, a
... Show More<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m
... Show More<abstract><p>Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel
... Show MoreIn this work, a simple and new method is proposed to simultaneously improve the physical layer security and the transmission performance of the optical orthogonal frequency division multiplexing system, by combining orthogonal frequency division multiplexing technique with chaotic theory principles. In the system, a 2-D chaotic map is employed. The introduced system replaces complex operations such as matrix multiplication with simple operations such as multiplexing and inverting. The system performance in terms of bit error rate (BER) and peak to average ratio (PAPR) is enhanced. The system is simulated using Optisystem15 with a MATLAB2016 and for different constellations. The simulation results showed that the BE
... Show More