Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local improvement operator to effectively discover community structure in the modular complex networks when employing the modularity density metric as a single-objective function. The framework of the proposed algorithm consists of three main steps: an initialization strategy, a movement strategy based on perturbation genetic operators, and an improvement operator. The key idea behind the improvement operator is to determine and reassign the complex network nodes that are located in the wrong communities if the majority of their topological links do not belong to their current communities, making it appear that these nodes belong to another community. The performance of the proposed algorithm has been tested and evaluated when applied to publicly-available modular complex networks generated using a flexible and simple benchmark generator. The experimental results showed the effectiveness of the suggested method in discovering community structure over modular networks of different complexities and sizes.
Tested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreSuicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o
... Show MoreGypsum is one of the important construction materials in Iraq in plastering surfaces and gypsum board , the ability of gypsum to give a comfortable an aesthetic ambiance as a construction material increase the need of gypsum , The particle size , total surface area and particle size distribution were factors affecting plaster properties used for construction properties . In this study gypsum paste was used with different mixing ratios of particle size and studied the physical properties of these types of pastes named (standard consistency ,setting time ,density) and compressive strength . The results showed that the water to gypsum ratio increased with increasing the fineness of the gypsum to (0.75%) and the setting time to the maxi
... Show MoreObjectives:
To evaluate mothers’ attitudes toward readiness for discharge care at home for a premature baby in Intensive Care Unit at teaching hospitals in Medical City Complex and to find out the relationship between mothers’ attitudes and their socio-demographic characteristics.
Methodology: A quasi-experimental study design was carried out through the period of 6th January 2020 to 2021 to 11th March 2021, to evaluate mother’s attitude toward discharge care plan for premature babies. The study carried out in Welfare Teaching Hospital, Nursing Home Hospital and Baghdad Teaching Hospital at Medical City Complex in Baghdad City on 30 mother of premature babies in neonatal intensive care units using the nonprobability sampling
Two simple and sensitive spectrophotometric methods are proposed for the determination of amitriptyline in its pure form and in tablets. The first method is based on the formation of charge- transfer complex between amitriptyline as n-donor and tetracyano-ethylene (TCNE) as πacceptor. The product exhibit absorbance maximum at 470 nm in acetonitrile solvent (pH =9.0 ) . In the second method the absorbance of the ion- pair complex, which is formed between the soughted drug and bromocresol green (BCG), was measured at 415 nm at ( pH=3.5) . In addition to classical univariate optimization, modified simplex method (MSM) was applied in the optimization of the variable affecting the color producing reaction by a geometric simple
... Show MoreThis paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere
... Show MoreBackground: Background: Diabetes mellitus is a life-threatening disease. Global prevalence of diabetes mellitus is increasing rapidly providing a worrying indication and major threat to global health unless interventions are created through community awareness and knowledge regarding different aspect of DM.
Aims: To assess the level of awareness regarding diabetes risk factors, prevention and management among community members in Baqubah city and to identify any association between awareness level and some variables.
Methods: Across sectional study was carried out from the 1st of January - 30th of November 2019 in all primary health care centers (six centers) in center of Baqubah city. A convenien
... Show More