Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local improvement operator to effectively discover community structure in the modular complex networks when employing the modularity density metric as a single-objective function. The framework of the proposed algorithm consists of three main steps: an initialization strategy, a movement strategy based on perturbation genetic operators, and an improvement operator. The key idea behind the improvement operator is to determine and reassign the complex network nodes that are located in the wrong communities if the majority of their topological links do not belong to their current communities, making it appear that these nodes belong to another community. The performance of the proposed algorithm has been tested and evaluated when applied to publicly-available modular complex networks generated using a flexible and simple benchmark generator. The experimental results showed the effectiveness of the suggested method in discovering community structure over modular networks of different complexities and sizes.
The alternating direction implicit method (ADI) is a common classical numerical method that was first introduced to solve the heat equation in two or more spatial dimensions and can also be used to solve parabolic and elliptic partial differential equations as well. In this paper, We introduce an improvement to the alternating direction implicit (ADI) method to get an equivalent scheme to Crank-Nicolson differences scheme in two dimensions with the main feature of ADI method. The new scheme can be solved by similar ADI algorithm with some modifications. A numerical example was provided to support the theoretical results in the research.
In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreThe research aims to identify the role of community participation in achieving organizational distinction in the Dhulia's municipality, which is one of the formations of the Ministry of Construction, Housing, Municipalities and Public Works in Salah al-Din Governorate, which is one of the service organizations that have a fundamental role in providing service to the community, which has faced many administrative challenges and many problems caused by the rapid and continuous changes in the environment, therefore modern management concepts must be adopted, such as community participation and the knowledge of its role To achieve its goals, which helps it in facing changes as well as achieving organizational excelle
... Show MoreAbstract
Drug information resources are the information that is used in medications discovery, utilization, and management. Little information about different types of resources used by Iraqi community pharmacists is known. Therefore, the objectives were to determine drug information resources' type do the pharmacists used and the common drug information questions they faced during their work in community pharmacy. A cross-sectional descriptive study was conducted in different Iraqi provinces and online self-reported survey was introduced through Google Form Software to an appropriate sample of graduated pharmacists who were working in a private community pharmacy and having at least one
... Show More<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most effi
... Show MoreHuman posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show More