Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To address this challenge, This paper proposes the Neural Control Exponential Weight of Priority Based Rate Control (NEWPBRC) algorithm for adjusting the node transmission rate and facilitate the problem of congestion occur in WMSNs. The proposed algorithm combines Neural Network Controller (NC) with the Exponential Weight of Priority Based Rate Control (EWPBRC) algorithms. The NC controller can calculate the appropriate weight parameter λ in the Exponential Weight (EW) algorithm for estimating the output transmission rate of the sink node, and then, on the basis of the priority of each child node, an appropriate transmission rate is assigned. The proposed algorithm can support four different traffic classes namely, Real Time traffic class (RT class); High priority, Non Real-Time traffic class (NRT1 class); Medium priority, Non Real-Time traffic class (NRT2 class); and Low priority,
A numerical computation for determination transmission coefficient and resonant tunneling energies of multibarriers heterostructure has been investigated. Also, we have considered GaN/Al0.3Ga0.7N superlattice system to estimate the probability of resonance at specific energy values, which are less than the potential barrier height. The transmission coefficient is determined by using the transfer matrix method and accordingly the resonant energies are obtained from the T(E) relation. The effects of both well width and number of barriers (N) are observed and discussed. The numbers of resonant tunneling peaks are generally increasing and they become sharper with the increasing of N. The resonant tunneling levels are shifted inside the well by
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreThe present study conducted on 30 female patients with osteoarthritis 0A a
attending Baghdad teaching hosp ital, in addition to 30 healthy females , all subjects
were ( 35-65) years old.
Some biochemical parameters were measured in the sera of patients and healthy
group s. The parameters were Glutathione (GSH). Ceruloplasmin (Cp) and some trace
elements ,including Copper (Cu) ,Cu/ Cp ratio and Selenium (Se) were determined . The
results revealed a significant reduction in all parameters of patients sera compared to
healthy group .
The reduction in GSH and Cu/Cp ratio confirms tissue damage associated with
oxidative stress injury
A conclusion was obtained hrer ,that Cu wasn’t an important ele
This valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum
... Show MoreBackground: Coronavirus pandemic (COVID-19) has enormously affected various healthcare services including the one of community pharmacy. The ramifications of these effects on Iraqi community pharmacies and the measures they have taken to tackle the spread of COVID-19 is yet to be explored. In this cross sectional survey, infection control measures by community pharmacies in Sulaimani city/Iraq has been investigated.
Methods: Community pharmacists were randomly allocated to participate in a cross-sectional survey via visiting their pharmacies and filling up the questionnaire form.
Results and discussion:
... Show MoreIn this paper a refractive index sensor based on micro-structured optical fiber has been proposed using Finite Element Method (FEM). The designed fiber has a hexagonal cladding structure with six air holes rings running around its solid core. The air holes of fiber has been infiltrated with different liquids such as water , ethanol, methanol, and toluene then sensor characteristics like ; effective refractive index , confinement loss, beam profile of the fundamental mode, and sensor resolution are investigated by employing the FEM. This designed sensor characterized by its low confinement loss and high resolution so a small change in the analyte refractive index could be detect which is could be useful to detect the change of
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreWe report on using a CO2 (10.6 µm) laser to debond the lithium disilicate veneers. Sixty-four sound human premolar teeth and 64 veneer specimens were used in the study. The zigzag movement via CO2 laser handpiece along with an air-cooled jet to prevent temperature elevation above the necrosis temperature limit (5.5 C°) was applied. The optimal deboning irradiation time was super-fast, at about 5 seconds at 3 Watt CO2 laser power. It is 20 times less than any previously published work for veneers debonding. The enamel beneath the debonded veneers has been assessed by atomic force microscopy (AFM) and shear stress technique as criteria for the easiness of debonding. The
... Show MoreDue to that the Ultra Wide Band (UWB) technology has some attractive features like robustness to multipath fading, high data rate, low cost and low power consumption, it is widely use to implement cognitive radio network. Intuitively, one of the most important tasks required for cognitive network is the spectrum sensing. A framework for implementing spectrum sensing for UWB-Cognitive Network will be presented in this paper. Since the information about primary licensed users are known to the cognitive radios then the best spectrum sensing scheme for UWB-cognitive network is the matched filter detection scheme. Simulation results verified and demonstrated the using of matched filter spectrum sensing in cognitive radio network with UWB and pro
... Show MoreThis paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.