Preferred Language
Articles
/
9RaRSIcBVTCNdQwC5kFd
Priority Based Transmission Rate Control with Neural Network Controller in WMSNs
...Show More Authors

Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To address this challenge, This paper proposes the Neural Control Exponential Weight of Priority Based Rate Control (NEWPBRC) algorithm for adjusting the node transmission rate and facilitate the problem of congestion occur in WMSNs. The proposed algorithm combines Neural Network Controller (NC) with the Exponential Weight of Priority Based Rate Control (EWPBRC) algorithms. The NC controller can calculate the appropriate weight parameter λ in the Exponential Weight (EW) algorithm for estimating the output transmission rate of the sink node, and then, on the basis of the priority of each child node, an appropriate transmission rate is assigned. The proposed algorithm can support four different traffic classes namely, Real Time traffic class (RT class); High priority, Non Real-Time traffic class (NRT1 class); Medium priority, Non Real-Time traffic class (NRT2 class); and Low priority,

View Publication
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Reducing False Notification in Identifying Malicious Application Programming Interface(API) to Detect Malwares Using Artificial Neural Network with Discriminant Analysis
...Show More Authors

 This paper argues the accuracy of behavior based detection systems, in which the Application Programming Interfaces (API) calls are analyzed and monitored. The work identifies the problems that affecting the accuracy of such detection models. The work was extracted (4744) API call through analyzing. The new approach provides an accurate discriminator and can reveal malicious API in PE malware up to 83.2%. Results of this work evaluated with Discriminant Analysis

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Reducing False Notification in Identifying Malicious Application Programming Interface(API) to Detect Malwares Using Artificial Neural Network with Discriminant Analysis
...Show More Authors

Publication Date
Sun Jan 01 2017
Journal Name
Statistical Applications In Genetics And Molecular Biology
Mixture model-based association analysis with case-control data in genome wide association studies
...Show More Authors
Abstract<p>Multilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated d</p> ... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Rigid Trunk Sewer Deterioration Prediction Models using Multiple Discriminant and Neural Network Models in Baghdad City, Iraq
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Aug 01 2017
Journal Name
Journal Of Engineering
Rigid trunk sewer deterioration prediction models using multiple discriminant and neural network models in Baghdad city, Iraq
...Show More Authors

The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the

... Show More
Publication Date
Wed Aug 31 2022
Journal Name
Ieee Access
SHE Networks: Security, Health, and Emergency Networks Traffic Priority Management Based on ML and SDN
...Show More Authors

Recently, the increasing demand to transfer data through the Internet has pushed the Internet infrastructure to the nal edge of the ability of these networks. This high demand causes a deciency of rapid response to emergencies and disasters to control or reduce the devastating effects of these disasters. As one of the main cornerstones to address the data trafc forwarding issue, the Internet networks need to impose the highest priority on the special networks: Security, Health, and Emergency (SHE) data trafc. These networks work in closed and private domains to serve a group of users for specic tasks. Our novel proposed network ow priority management based on ML and SDN fullls high control to give the required ow priority to SHE dat

... Show More
View Publication
Scopus (12)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
International Journal Of Mathematics In Operational Research
A single server fuzzy queues with priority and unequal service rates
...Show More Authors

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Sep 01 2014
Journal Name
Al-khwarizmi Engineering Journal
Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PIaDb Controller
...Show More Authors

Nowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order  PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to  torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Thu Oct 31 2024
Journal Name
Iraqi Geological Journal
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use

... Show More
View Publication Preview PDF
Scopus Crossref