Preferred Language
Articles
/
9RZQTYsBVTCNdQwCyMh2
Photocatalytic activity of Ag-doped TiO2 nanostructures synthesized by DC reactive magnetron co-sputtering technique
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Dec 01 2014
Journal Name
Photonic Sensors
Crystalline Structure and Surface Morphology of Tin Oxide Films Grown by DC Reactive Sputtering
...Show More Authors

Abstract: Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar – 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.

Preview PDF
Publication Date
Mon Aug 04 2014
Journal Name
Photonic Sensors
Crystalline structure and surface morphology of tin oxide films grown by DC reactive sputtering
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Biocatalysis And Agricultural Biotechnology
Enhancing the prodigiosin pigment by adding Ag\TiO2 synergism for antibacterial activity
...Show More Authors

View Publication Preview PDF
Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Effect of electrode separation in magnetron DC plasma sputtering on grain size of gold coated samples
...Show More Authors

In this work, an experimental research on a low voltage DC magnetron plasma sputtering (0-650) volt is used for coating gold on a glass substrate at a constant pressure of argon gas 0.2 mbar and deposition time of 30 seconds. We focused on the effects of operating conditions for the system such as, electrode separation and sputtering current on coated samples under the influence of magnetic flux. Electron temperature and electrons and ions densities are determined by a cylindrical single Langmuir probe. The results show the sensitivity of electrode separation lead to change the plasma parameters. Furthermore, the surface morphology of gold coated samples at different electrode separation and sputtering current were studied by atomic forc

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Fabrication and Characterization of Gas Sensor from ZrO2: MgO Nanostructure Thin Films by R.F. Magnetron Sputtering Technique
...Show More Authors

Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and  10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where the

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
International Journal For Light And Electron Optics
Optical properties of Ag-doped nickel oxide thin films prepared by pulsed-laser deposition technique
...Show More Authors

In this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.

View Publication
Scopus (27)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Ceramics International
Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films
...Show More Authors

The influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.

... Show More
View Publication
Scopus (21)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Thu May 02 2024
Journal Name
Iraqi Journal Of Applied Physic
Photosensitivity of Nb2O5/Si Thin Films Produced via DC Reactive Sputtering at Different Substrate Temperatures
...Show More Authors

This study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f

... Show More
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Preparation of Cu thin film by cylindrical magnetron sputtering device
...Show More Authors

In the present work, a D.C. magnetron sputtering system was
designed and fabricated. This chamber of this system includes two
coaxial cylinders made from copper .the inner one used as a cathode
while the outer one used as a node. The magnetic coils located on
the outer cylinder (anode) .The profile of magnetic field for various
coil current (from 2Amp to 14Amp) are shown. The effect of
different magnetic field on the Cu thin films thickness at constant
pressure of 7x10-5mbar is investigated. The result shown that, the
electrical behavior of the discharge strongly depends on the values
of the magnetic field and shows an optimum value at which the
power absorbed by the plasma is maximum. Furthermore, the
pl

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 01 2023
Journal Name
Iraqi Journal Of Physics
Influence of DC Magnetron Sputtering Power on Structural, Topography, and Gas Sensor Properties of Nb2O5/Si Thin Films.
...Show More Authors

This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV

... Show More
View Publication
Crossref