Preferred Language
Articles
/
9RYvIIwBVTCNdQwC3Pe7
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed.  A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing items in images. This article, will be focusing on comparing the main differences among the YOLO version's Architecture, and will discuss its evolution from YOLO to YOLOv8, its network architecture, new features, and applications. And starts by looking at the basic ideas and design of the first YOLO model, which laid the groundwork for the following improvements in the YOLO family. In additionally, this article will provide a step-by-step guide on how to use the YOLO version architecture, Understanding the primary drivers, feature development, constraints, and even relationships for the versions is crucial as the YOLO versions advance. Researchers interested in object detection, especially beginning researchers, would find this paper useful and enlightening.

View Publication
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization
...Show More Authors

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Effective Digital Image Colors Reduction/Quantization Method
...Show More Authors

In the current research work, a method to reduce the color levels of the pixels within digital images was proposed. The recent strategy was based on self organization map neural network method (SOM). The efficiency of recent method was compared with the well known logarithmic methods like Floyd-Steinberg (Halftone) dithering and Octtrees (Quadtrees) methods. Experimental results have shown that by adjusting the sampling factor can produce higher-quality images with no much longer run times, or some better quality with shorter running times than existing methods. This observation refutes the repeated neural networks is necessarily slow but have best results. The generated quantization map can be exploited for color image compression, clas

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Monitoring of environmental variations of marshes in Iraq using Adaptive classification method.
...Show More Authors

The object of the presented study was to monitor the changes that had happened
in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To
fulfill this goal, different satellite images had been used in different times, MSS
1973, TM 1990, ETM+ 2000 and MODIS 2010. K-Means which is unsupervised
classification and Neural Net which is supervised classification was used to classify
the satellite images 0Tand finally by use 0Tadaptive classification 0Twhich is0T3T 0T3Tapply
s0Tupervised classification on the unsupervised classification. ENVI soft where used
in this study.

View Publication Preview PDF
Publication Date
Tue Oct 29 2019
Journal Name
Journal Of Engineering
Mobile-based Human Emotion Recognition based on Speech and Heart rate
...Show More Authors

Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to   record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Towards Generating Robust Key Based on Neural Networks and Chaos Theory
...Show More Authors

There are large numbers of weakness in the generated keys of security algorithms. This paper includes a new algorithm to generate key of 5120 bits for a new proposed cryptography algorithm for 10 rounds that combine neural networks and chaos theory (1D logistic map). Two methods of neural networks (NN) are employed as Adaline and Hopfield and the results are combined through several sequential operation. Carefully integrating high quality random number generators from neural networks and chaos theory to obtain suitable key for randomness and complexity.

View Publication Preview PDF
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques
...Show More Authors

Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated.  For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos

... Show More
View Publication
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
The Effect Of Optimizers On The Generalizability Additive Neural Attention For Customer Support Twitter Dataset In Chatbot Application
...Show More Authors

When optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Diagnoses System of Varicose Disease
...Show More Authors

The diagnoses system of varicose disease has a good level of performance due to the complexity and uniqueness in patterns of vein of the leg. In addition, the patterns of vein are internal of the body, and its features are hard to duplicate, this reason make this method not easy to fake, and thus make it contains of a good features for varicose disease diagnoses. The proposed system used more than one type of algorithms to produce diagnoses system of varicose disease with high accuracy, in addition, this multi-algorithm technique based on veins as a factor to recognize varicose infection. The obtained results indicate that the design of varicose diagnoses system by applying multi- algorithms (Naïve Bayes and Back-Propagation) produced n

... Show More
View Publication Preview PDF
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design Feed Forward Neural Network to Determine Doses of the Decongestant for Cold Pills
...Show More Authors

The aim of this paper is to design feed forward neural network to determine the effects of
cold pills and cascades from simulation the problem to system of first order initial value
problem. This problem is typical of the many models of the passage of medication throughout
the body. Designer model is an important part of the process by which dosage levels are set.
A critical factor is the need to keep the levels of medication high enough to be effective, but
not so high that they are dangerous.

View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Crawling and Mining the Dark Web: A Survey on Existing and New Approaches
...Show More Authors

    The last two decades have seen a marked increase in the illegal activities on the Dark Web. Prompt evolvement and use of sophisticated protocols make it difficult for security agencies to identify and investigate these activities by conventional methods. Moreover, tracing criminals and terrorists poses a great challenge keeping in mind that cybercrimes are no less serious than real life crimes. At the same time, computer security societies and law enforcement pay a great deal of attention on detecting and monitoring illegal sites on the Dark Web. Retrieval of relevant information is not an easy task because of vastness and ever-changing nature of the Dark Web; as a result, web crawlers play a vital role in achieving this task. The

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (6)
Scopus Crossref