Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing items in images. This article, will be focusing on comparing the main differences among the YOLO version's Architecture, and will discuss its evolution from YOLO to YOLOv8, its network architecture, new features, and applications. And starts by looking at the basic ideas and design of the first YOLO model, which laid the groundwork for the following improvements in the YOLO family. In additionally, this article will provide a step-by-step guide on how to use the YOLO version architecture, Understanding the primary drivers, feature development, constraints, and even relationships for the versions is crucial as the YOLO versions advance. Researchers interested in object detection, especially beginning researchers, would find this paper useful and enlightening.
It is so much noticeable that initialization of architectural parameters has a great impact on whole learnability stream so that knowing mathematical properties of dataset results in providing neural network architecture a better expressivity and capacity. In this paper, five random samples of the Volve field dataset were taken. Then a training set was specified and the persistent homology of the dataset was calculated to show impact of data complexity on selection of multilayer perceptron regressor (MLPR) architecture. By using the proposed method that provides a well-rounded strategy to compute data complexity. Our method is a compound algorithm composed of the t-SNE method, alpha-complexity algorithm, and a persistence barcod
... Show MoreDistributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show MoreSaccharin is firstly synthesized in 1879. It is a very well-known as an inexpensive substitute for sugar as it is a non-caloric sweetener. The article shows the properties, use, metabolism and various synthesis and reactions of saccharine. Moreover, the toxicological reports explain that saccharin is mostly responsible for the bladder tumors observed in the male rats, the relationship between the consumption of saccharin and bladder cancer is afforded by epidemiological studies. The benefit-risk evaluation for saccharin is hardly to indicate. Saccharin is a sugar substitute, frequently used either in food industry, or in pharmaceutical formulations and even in tobacco products. The chemistry of saccharin is inter
... Show MoreSmishing is a cybercriminal attack targeting mobile Short Message Service (SMS) devices that contains a malicious link, phone number, or email. The attacker intends to use this message to steal the victim's sensitive information, such as passwords, bank account details, and credit cards. One method of combating smishing is to raise awareness and educate users about the various tactics used by SMS phishers. But even so, this method has been criticized for becoming inefficient because smishing tactics are continually evolving. A more promising anti-smishing method is to use machine learning. This paper introduces a number of machine learning algorithms that can be used for detecting smishing. Furthermore, the differences and simil
... Show MoreBackground: Inflammation of the brain parenchyma brought on by a virus is known as viral encephalitis. It coexists frequently with viral meningitis and is the most prevalent kind of encephalitis.
Objectives: To throw light on viral encephalitis, its types, epidemiology, symptoms and complications.
Results: Although it can affect people of all ages, viral infections are the most prevalent cause of viral encephalitis, which is typically seen in young children and old people. Arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumoviruses, and coronaviruses are just a few of the viruses that have been known to cause encephalitis.
... Show MoreThe problem of text recognition and its applicability as part of images captured in the wild has gained a significant attention from the computer vision community in recent years. In contrast to the recognition of printed documents, scene text recognition is a difficult problem. Contrary to recognition of printed documents, recognizing a scene text is a challenging problem. Many researches focus on the problem of recognizing text extracted from natural scene images. Significant attempts have been made to address this problem in recent past. However, many of these attempts work on utilizing availability of strong context, which naturally limits the dictionary. This paper presents a review of recent papers related to scene text
... Show MoreThe Internet is the hallmark of the age of technology and this technology is complemented by the presence of software which is one of the basic components of the operation of the network and it is used in almost all daily life aspects such as industry, commerce and others. Because the digital documents and objects can be easily replicated and distributed at an economically low cost and as the software is a type of digital object, the problem of software watermarking risen as related to how to protect data from piracy. Therefore, various techniques have been developed to protect codes from misusing and unauthorized alteration. Each of them is known as watermarking technology that protects data by inserting secret information into software
... Show MoreImage Fusion is being used to gather important data from such an input image array and to place it in a single output picture to make it much more meaningful & usable than either of the input images. Image fusion boosts the quality and application of data. The accuracy of the image that has fused depending on the application. It is widely used in smart robotics, audio camera fusion, photonics, system control and output, construction and inspection of electronic circuits, complex computer, software diagnostics, also smart line assembling robots. In this paper provides a literature review of different image fusion techniques in the spatial domain and frequency domain, such as averaging, min-max, block substitution, Intensity-Hue-Saturation(IH
... Show MoreThe demand for electronic -passport photo ( frontal facial) images has grown rapidly. It now extends to Electronic Government (E-Gov) applications such as social benefits driver's license, e-passport, and e-visa . With the COVID 19 (coronavirus disease ), facial (formal) images are becoming more widely used and spreading quickly, and are being used to verify an individual's identity, but unfortunately that comes with insignificant details of constant background which leads to huge byte consumption that affects storage space and transmission, where the optimal solution that aims to curtail data size using compression techniques that based on exploiting image redundancy(s) efficiently.