Gas compressibility factor or z-factor plays an important role in many engineering applications related to oil and gas exploration and production, such as gas production, gas metering, pipeline design, estimation of gas initially in place (GIIP), and ultimate recovery (UR) of gas from a reservoir. There are many z-factor correlations which are either derived from Equation of State or empirically based on certain observation through regression analysis. However, the results of the z-factor obtained from different correlations have high level of variance for the same gas sample under the same pressure and temperature. It is quite challenging to determine the most accurate correlation which provides accurate estimate for a range of pressures, temperatures, and gas compositions. This paper presents a novel method to accurately estimate GIIP of an Australian tight gas field through identification of the most appropriate z-factor correlations, which can accurately determine the z-factor and other PVT properties for a wide range of gas compositions, temperatures, and pressures. The sensitivity study results demonstrated that a single correlation cannot work across the range of pressures and temperatures for a certain gas sample necessary to calculate z-factor during simulation process and/or other analysis, such as material balance and volumetric estimate.
In this research, the concentration of radon gas was calculated in the book store rooms of schools in Diyala Governorate, it was calculated by Solid State Nuclear Track Detectors (SSNTDS) when the detector (CR-39) was used, the detector was placed and suspended at a distance of 160 cm from the surface of the earth, and the detector was exposed for 30 days to record alpha tracks. The results of radon concentration showed that the highest concentration percentage was found in (Eishtar) school, which was equal to (84.896) Bq/m3, while the lowest value was recorded in (Habhib) school, which was equal to (11.242) Bq/m3, where the concentration rate was equal to (28.158) Bq/m3. When we compared our results w
... Show MoreDuring the winter, in the industry region (Shaikh Omer) and by applying a passive radon detector (CR-39), lung cancer risk has been measured in twelve rooms of different workshops of two old factories in this site. The radon concentration is ranged from (123.345 Bq/m3) to (328.985 Bq/m3) with an average of (244.19±61.52 Bq/m3). Lung cancer risk ranged from 55.993 to 149.346 per million people and with an average of (110.855 per million people) which were lower than the recommended values (170-230 per million people), so there was no cancer risk on workers in these locations.
Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
Tin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two act
... Show MoreThe paper discusses the structural and optical properties of In2O3 and In2O3-SnO2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In2O3 where increased after loading SnO2, this addition is a challenge in gas sensing application. Sensitivity of In2O3 thin film against NO2 toxic gas is 35% at 300oC. Sensing properties were improved after adding Tin Oxide (SnO2) to be mo
... Show MoreForest fires continue to rise during the dry season and they are difficult to stop. In this case, high temperatures in the dry season can cause an increase in drought index that could potentially burn the forest every time. Thus, the government should conduct surveillance throughout the dry season. Continuous surveillance without the focus on a particular time becomes ineffective and inefficient because of preventive measures carried out without the knowledge of potential fire risk. Based on the Keetch-Byram Drought Index (KBDI), formulation of Drought Factor is used just for calculating the drought today based on current weather conditions, and yesterday's drought index. However, to find out the factors of drought a day after, the data
... Show MoreThe Khor Mor gas-condensate processing plant in Iraq is currently facing operational challenges due to foaming issues in the sweetening tower caused by high-soluble hydrocarbon liquids entering the tower. The root cause of the problem could be liquid carry-over as the separation vessels within the plant fail to remove liquid droplets from the gas phase. This study employs Aspen HYSYS v.11 software to investigate the performance of the industrial three-phase horizontal separator, Bravo #2, located upstream of the Khor Mor sweetening tower, under both current and future operational conditions. The simulation results, regarding the size distribution of liquid droplets in the gas product and the efficiency gas/liquid separation, r
... Show MoreZinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentrati
... Show More