A new series of chalcone derivatives featuring an oxadiazole-quinoline moiety were successfully synthesized through a multi-step reaction sequence, commencing with quinoline-2-carboxylic acid as the starting material. First, the carboxylic group was chlorinated to form an acid chloride, following reacted with hydrazine hydrate. The resulting product underwent cyclization with carbon disulfide in an alkaline solution to produce 5-(quinolin-2-yl)-1,3,4-oxadiazole-2-thiol, followed by alkylation using chloroacetone. In the final step, an aldol condensation reaction was carried out by grinding the acetone derivative with various aromatic aldehydes, yielding the desired chalcones. The synthesized compounds were characterized by Rf, FTIR, 1HNMR, and 13CNMR. The effects of compound S6 were evaluated using an MTT assay. This assay was performed on two cell lines - the skin cancer cell line A375 and the normal cell line HdFn (human dermal fibroblasts) which performed a significant inhibition rate. All synthesized compounds were evaluated against four different types of bacteria like S. aureus, streptococcus epidermidis, E.coli, Klebsiella spp. and one type of fungi like Candida albicans. Additionally, (Petra/Osiris/Molinspiration) POM analyses were utilized to identify pharmacophore sites for the newly synthesized compounds.
In this article, new Schiff base ligand LH-prepared Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II), and Pt(II) materials were analyzed using spectroscopy (1 Metal: 2 LH). The ligand was identified using techniques such as FTIR, UV-vis, 1H-13C-NMR, and mass spectra, and their complexes were identified using CHN microanalysis, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements, and magnetic susceptibility. According to the measurements, the ligand was bound to the divalent metal ions as a bidentate through oxygen and nitrogen atoms. The complexes that were created had microbicide activity against two different bacterial species and one type of fungus. DPPH techniques were bei
... Show MoreThe target of this study was to synthesize several new Ciprofloxacin drug analogs by providing a nucleophilic substitution procedure that provides new functionality at the carboxylic group location. The analogs were synthesized, designed, and characterized by 1HNMR, and FTIR. The synthetic path began from the reaction of ciprofloxacin drug with morpholine to give compound[B], ciprofloxacin derivative was linked with a variety of primary and secondary amines to give compounds[B1-B9]. The above-mentioned prepared compounds [B3 and B5] were applied to liver enzymes, and the increase in the activity of these enzymes was observed. In addition, a theoretical study was conducted to study the energies and properties of the prepared co
... Show MoreBacterial infections pose an ongoing challenge due to resistance developed by infectious bacteria. So much research targeting designing new antibacterials is published annually. Our goal is to synthesize compounds that have given antibacterial activity according to molecular docking against the chosen target protein and that have acceptable ADMET properties that can be synthesized and used in the future. New 2-(5-methoxy-1-(4-chlorobenzene)-2-methyl-1H-indol-3-yl)acetohydrazide derivatives’ antibacterial efficacy against two common strains of Gram-negative and Gram-positive microorganisms has been developed, produced, and investigated. Sophisticated, modern analytical methods, including ATR-FTIR and 1H NMR spectroscopy, were used
... Show MoreNewly series of 6,6’-((2-(Aryl)dihydropyrimidine-1,3(2H,4H)-diyl)bis(methylene))bis(2-methoxy phenol) (3a-i) were synthesized from cyclization of 6,6’-((propane-1,3-diylbis (azanediyl)) bis(methylene)) bis(2-methoxyphenol) with several aryl aldehyde in the presence of acetic acid. The newly compounds characterized from their IR, NMR and EIMs spectra. The antioxidant capacity of these compounds screened by utilizing DPPH and FRAP assays. Compounds 3g and 3i exhibited significant antioxidant capability in both assays. Docking study for these compounds as a potential inhibitors of gyrase enzyme were carried out. Compound 3g exhibited significant inhibition with binding free energies (DG) higher than novobiocin. compounds 2, 3a, 3b, 3
... Show MoreRKRAS L. K. Abdul Karem, F. H. Ganim, Biochemical and Cellular Archives, 2018 - Cited by 2
SYNTHESIS, CHARACTERIZATION, STRUCTURAL, THERMAL, POM STUDIES, ANTIMICROBIAL AND DNA CLEAVAGE ACTIVITY OF A NEW SCHIFF BASE-AZO LIGAND AND ITS COMPLEXATION WITH SELECTED METAL IONS
New complexes of the some trivalent transition metal ions of the uracil such as [M(Ura)3Cl3] and mixed ligand metal complexes with uracil and oxalic acid [M(Ura)2(OA)(OH2)Cl].H2O type, where (Ura)=Uracil, (OA= Oxalic acid dihydrate, (M= Cr+3 and Fe+3) were synthesized and characterized by the elemental analysis, FT.IR, electronic spectra, mass spectra and magnetic susceptibility as well as the conductivity measurements. Six–coordinated metal complexes were suggested for the isolated complexes of Cr+3 and Fe+3 with molecular formulas dependent on the nature of uracil and oxalic acid present. The proposed molecular structure for all complexes with their ions is octahedral geometries. The antibacterial efficiency was tested of metal salts, l
... Show MoreAbstract In the current contribution, a novel binuclear nickel(II) and zinc(II) complexes were prepared from a hexadentate ligand prepared via condensation of 3,3'-Bipyridine-6,6'-dicarbaldehyde , 2-amino-5-chlorobenzaldehyde and 2-Aminophenol .The symmetric ligand (H2DTPE) and its metal complexes were illustrated utilizing various techniques of physicochemical containing magnetic moment, analytical analysis and spectroscopy of mass, IR, 13C and 1H NMR, TGA and UV-Vis. The particles of MO Nanoscale were created from the labeled complex applying the ways of pyrolysis and utilizing methods of XRD, FT-IR, and FE-SEM, that specified close compatibility with the typical pattern for nanoparticles of NiO, ZnO and appeared the reasonable size in
... Show MoreThe present study envisaged utilizing 4-aminoantipyrine as key intermediate for the synthesis of some new derivatives bearing anti-bacterial and anti-cancer activities moieties viz., antipyrine diazenyl benzaldehydes 2(ad) which were obtained by coupling of diazotized 4-aminoantipyrine (1) with substituted benzaldehydes at 0◦C (iced) temperature. The other antipyrine derivatives where containing bis heterocycles like bis thiazolidinone-antipyrine (4), bis imidazolidinone -antipyrine (5) and bis azetidinone -antipyrine (6).These compounds were prepared through the reaction between 4- aminoantipyrine and terephthaldicarboxaldehyde to get (3) which were reacted with mercaptoacetic acid , glycine or chloroacetyl chloride separately to get com
... Show More