A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreBatch reactive distillation was studied in packed bed column. Esterification of methanol with acetic acid to produce methyl acetate and water with homogenous sulfuric acid as a catalyst was considered. This system was chosen because the reaction is reversible and the boiling point of reactant and products are different.
The reaction was carried out with and without distillation column and shows that the reactive distillation is more efficient from the conventional process (reactor and then separation). The conversion of acetic acid and concentration of methyl acetate increase by (30.43% and 75.14%) respectively at the best condition (reflux ratio 2, feed mole ratio 2 and batch time 90 minute).
The influence of various parameters, s
The research aims to determine the mix of production optimization in the case of several conflicting objectives to be achieved at the same time, therefore, discussions dealt with the concept of programming goals and entrances to be resolved and dealt with the general formula for the programming model the goals and finally determine the mix of production optimization using a programming model targets to the default case.
The operation of production planning is a difficult operation and it's required High effect and large time especially it is dynamic activity which it's basic variables change in continuous with the time, for this reason it needs using one of the operation research manner (Dynamic programming) which has a force in the decision making process in the planning and control on the production and its direct affect on the cost of production operation and control on the inventory.
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreIn this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control, of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the controller, a mathematical model for the QC is developed in a form appropriate for the IBC design. Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X, Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the convergence of the position tracking
... Show More