Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a type of stochastic optimization technique that has proven effective in solving various problems. The results of the study show significant improvements in NPV when using genetic algorithms compared to traditional methods, particularly for problems with numerous decision variables. The findings suggest that genetic algorithms are a promising tool for optimizing well placement in oil field development, improving NPV, and reducing the risk of project failure.
Atmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show Moreabstract
the research discussed a stage of strategic management. The strategic of the evaluation of the proposed strategy through feedback is to ensure that it is implemented with the least possible variation. The research aims at evaluation a proposed strategy for the Ministry of Planning for the years 2018-2022 in line with the orientations of the state, taking into account the surrounding environmental conditions. It relies on scientific bases and steps to formulate the strategy The extent of the strategy suitability was tested through a set of statistical means and its objectivity was verified through a survey of a number of specialized experts who were selected in accordance with the principle
... Show MoreIn this study a new antiseptic was formulated and tested to match the effectiveness against microorganisms. The formulation consisted of Povidone - Iodine (PVP-I) (10%), H2O2 (3%) and Aloe Vera gel (pure). Different ratios of these materials were prepared within the acceptable range of pH for an antiseptic (3-6). The prepared samples were tested. The In Vitro test was performed by using four bacteria, two were Gram-Positive (Staphylococcus aureus and Bacillus cereus) and two were Gram-Negative (Escherichia coli and Pseudomonas aeruginosa). The new antiseptic showed 100% killing rate for E. coli, Ps. aeruginosa and S. aureus and 96.4667% killing rate for B. cereus. When the new antiseptic was compared with two common
... Show MoreThroughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show More
