Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a type of stochastic optimization technique that has proven effective in solving various problems. The results of the study show significant improvements in NPV when using genetic algorithms compared to traditional methods, particularly for problems with numerous decision variables. The findings suggest that genetic algorithms are a promising tool for optimizing well placement in oil field development, improving NPV, and reducing the risk of project failure.
Green areas are an essential component of city planning, as they serve as an outlet for them to spend their free time, in addition to the environmental role that these green areas play in improving the city’s climate by purifying the air and beautifying the city. The study’s problem is summarized in identifying the appropriateness of the current spatial distribution of green areas in the city of Najaf with the current population densities and the pattern in which green areas are distributed using GIS and knowing the per capita share of those green areas in the city, the research assumes that the inconsistency of spaces between regions Green and residential neighbourhoods need to c
The paper uses the Direct Synthesis (DS) method for tuning the Proportional Integral Derivative (PID) controller for controlling the DC servo motor. Two algorithms are presented for enhancing the performance of the suggested PID controller. These algorithms are Back-Propagation Neural Network and Particle Swarm Optimization (PSO). The performance and characteristics of DC servo motor are explained. The simulation results that obtained by using Matlab program show that the steady state error is eliminated with shorter adjusted time when using these algorithms with PID controller. A comparative between the two algorithms are described in this paper to show their effectiveness, which is found that the PSO algorithm gives be
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreLithology identification plays a crucial role in reservoir characteristics, as it directly influences petrophysical evaluations and informs decisions on permeable zone detection, hydrocarbon reserve estimation, and production optimization. This paper aims to identify lithology and minerals composition within the Mishrif Formation of the Ratawi Oilfield using well log data from five open hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. At this step, the logging lithology identification tasks often involve constructing a lithology identification model based on the assumption that the log data are interconnected. Lithology and minerals were identified using three empirical methods: Neutron-Density cross plots for lithology id
... Show MoreThe objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
The research deals with the relationship between supplier evaluation (single variable) and family brand strategy (single variable) a case study in the battery factory\Al-Waziriya, and the fact that the industrial sector represents a cornerstone for building the country’s economy of and their development. The research has been selected on this basis. The problem stems from the lack of business understanding of the real role played by the assessment of the suppliers' and its strong impact on its reputation and position in the market. The research gains its importance by moving away from traditional marketing style in terms of characteristics related to the resource itself, and the service provided by the factory to c
... Show MoreThis research aims to the possibility of evaluating the strategic performance of the State Board for Antiquities and Heritage (SBAH) using a balanced scorecard of four criteria (Financial, Customers, Internal Processes, and Learning and Growth). The main challenge was that the State Board use traditional evaluation in measuring employee performance, activities, and projects. Case study and field interviews methodology has been adopted in this research with a sample consisting of the Chairman of the State Board, 6 General Managers, and 7 Department Managers who are involved in evaluating the strategic performance and deciding the suitable answers on the checklists to analyze it according to the 7-points Likert scale. Data analysis re
... Show More