Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a type of stochastic optimization technique that has proven effective in solving various problems. The results of the study show significant improvements in NPV when using genetic algorithms compared to traditional methods, particularly for problems with numerous decision variables. The findings suggest that genetic algorithms are a promising tool for optimizing well placement in oil field development, improving NPV, and reducing the risk of project failure.
Due to the potential cost saving and minimal temperature stratification, the energy storage based on phase-change materials (PCMs) can be a reliable approach for decoupling energy demand from immediate supply availability. However, due to their high heat resistance, these materials necessitate the introduction of enhancing additives, such as expanded surfaces and fins, to enable their deployment in more widespread thermal and energy storage applications. This study reports on how circular fins with staggered distribution and variable orientations can be employed for addressing the low thermal response rates in a PCM (Paraffin RT-35) triple-tube heat exchanger consisting of two heat-transfer fluids flow in opposites directions throug
... Show MoreObjective Thalassemic patients present with multiple immune abnormalities that may predispose them to oral Candida, however this has not been investigated. The aim of this study was to assess oral candidal colonization in a group of patients with β-thalassemia major both qualitatively and quantitatively. Study design The oral mycologic flora of 50 β-thalassemia major patients and 50 age- and sex-matched control subjects was assessed using the concentrated oral rinse technique. Candida species were identified using the germ tube test and the Vitek yeast identification system. Results Oral Candida was isolated from 37 patients (74%) and 28 healthy subjects (56%; P = .04). The mean candidal count was significantly higher in thalassemic patie
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MorePrevious studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreIn this research , the structural and optical properties of pure of cadmium oxide, pure (CdO) were studided thin films in a thermal evaporation in a vacuum depositing metal cadmium pure rules of the glass at room temperature (300K) and thickness (300 ± 20nm) and the time of deposition (1.25sec) was oxidation of thin films cadmium (Cd) record temperature (673k) for a period of one hour to the presence of air optical energy gap for direct electronic transitions were calculated (permitted) as a function of absorption coefficient and permeability and reversibility by recording the spectrum absorbance and permeability of the membrane the record
... Show MoreIn this work, varying compositions of SiO2 micro filler were added
with the Polyvinyl Chloride (PVC) and samples have been prepared
using film casting technique. The results have been analyzed and
compared for PVC samples with (1 wt%, 3 wt%, 5 wt% and 10 wt%)
SiO2 micro filler. Mechanical characteristics such as tensile strength,
elongation at break and Young`s modulus were measured for all the
samples, where the tensile strength was increased from 8.39 Mpa for
purified PVC to 16 Mpa for 3% SiO2/PVC composite. Also, thermal
conductivity measurement values illustrated that composite materials
have a good thermal insulation at 10 wt. %, thermal conductivity was
decreased from 0.1684 W/m.
xxxxxx