Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a type of stochastic optimization technique that has proven effective in solving various problems. The results of the study show significant improvements in NPV when using genetic algorithms compared to traditional methods, particularly for problems with numerous decision variables. The findings suggest that genetic algorithms are a promising tool for optimizing well placement in oil field development, improving NPV, and reducing the risk of project failure.
This work presents the simulation of a Low density Parity Check (LDPC) coding scheme with
multiuserMulti-Carrier Code Division Multiple Access (MC-CDMA) system over Additive White
Gaussian Noise (AWGN) channel and multipath fading channels. The decoding technique used in
the simulation was iterative decoding since it gives maximum efficiency with ten iterations.
Modulation schemes that used are Phase Shift Keying (BPSK, QPSK and 16 PSK), along with the
Orthogonal Frequency Division Multiplexing (OFDM). A 12 pilot carrier were used in the estimator
to compensate channel effect. The channel model used is Long Term Evolution (LTE) channel with
Technical Specification TS 25.101v2.10 and 5 MHz bandwidth including the chan
This paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC
... Show MoreTaguchi experimental design (TED) is applied to find the optimum effectiveness of aqueous Red Pomegranate Peel (RPP) extract as a green inhibitor for the corrosion of mild steel in 2M H3PO4 solution. The Taguchi methodology has been used to study the effects of changing, temperature, RPP concentration and contact period, at three levels. Weight-loss measurements were designed by construction a L9 orthogonal arrangement of experiments. Results of the efficiencies of inhibition were embraced for the signal to noise proportion & investigation of variance (ANOVA). The results were further processed with a MINITAB-17 software package to find the optimal condition
... Show MoreThe biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show More
Abstract
Friction stir welding is a relatively new joining process, which involves the joining of metals without fusion or filler materials. In this study, the effect of welding parameters on the mechanical properties of aluminum alloys AA2024-T351 joints produced by FSW was investigated.
Different ranges of welding parameters, as input factors, such as welding speed (6 - 34 mm/min) and rotational speed (725 - 1235 rpm) were used to obtain their influences on the main responses, in terms of elongation, tensile strength, and maximum bending force. Experimental measurements of main responses were taken and analyzed using DESIGN EXPERT 8 experimental design software which was used to develop t
... Show MoreAbstract
This paper is an experimental work to determinate the effect of welding velocity and formed arc energy for CO2-MAG fusion weld pool. The input parameters (arc voltage, wire feed speed and gas flow rate) were investigated to find their effects on the weld joint efficiency. Design of experiment with response surface methodology technique was used to build empirical mathematical models for welding velocity and arc energy in term of the input welding parameters. The predicted quadratic models were statistically checked for adequacy purpose by ANOVA analysis. Additionally, numerical optimization was conducted to obtain the optimum values for welding velocity and arc energy. A good agree
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreHiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show More