The research was conducted between 2017 and 2019 at the College of Agricultural Engineering Sciences and Laboratory of Plant Tissue Culture for Postgraduate Studies at the University of Baghdad. One experiment used a totally random design. The experiment examined the effects of PEG (Polyethylene glycol) at concentrations of 0, 2, 4, 6, and 8% on the development of three sunflower types (Ishaqi-1, Aqmar, and AL-Haja) exposed to UV-C rays for 40 minutes as a result of the growing of the juvenile peduncle outside the live body. The aim of the study was to better comprehend the physiological and biochemical changes caused by water stress on the callus of several sunflower varieties. The X95950 gene was amplified using qPCR technology to investigate drought tolerance gene expression and callus cell content of glutathione, ascorbic acid, and APX enzyme as indicators to determine the effect of PEG on callus tissue cells in the nutrient medium. The expression of the X95950 gene was influenced by water stress. It was particularly expressed in Ishaqi-1 at 4 and 8% PEG concentrations, with values of 1.64 and 1.01, respectively. The glutathione content and activity of the enzyme ascorbate peroxidase, which were 56.49 mol-1 and 0.149 mg-1 protein absorption units, differed significantly among the varieties. PEG concentrations significantly influenced glutathione content, with 8% achieving the highest average of 50.07 mol g-1 and 4% achieving the highest averages of ascorbic acid and ascorbate peroxidase enzyme activity of 2.462 mg 100 g-1 and 0.138 mg-1 protein absorption units, respectively. The interaction was considerable, with the maximum average glutathione callus content in the Aqmar variety reaching 69.60 mol g-1 at 6% PEG concentration. At 4% PEG concentration, the Aqmar variety outperformed in terms of APX enzyme efficacy, reaching 0.238 mg-1 absorption units of protein.
Abstract
In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA) has higher resistance erosion than composites reinforced with carrot powder and sawdust at 30cm , angle 60
... Show MoreGenetic polymorphisms of genes whose products are responsible for activities, such as xenobiotic metabolism, mutagen detoxification and DNA-repair, have been predicted to be associated with the risk of developing lung cancer (LC). The association of LC with tobacco smoking has been extensively investigated, but no studies have focused on the Arab ethnic- ity. Previously, we examined the association between genetic polymorphisms among Phase I and Phase II metabolism genes and the risk of LC. Here, we extend the data by examining the correlation of OGG1 Ser326Cys combined with CYP1A1 (Ile462Val and MspI) and GSTP1 (Ile105Val and Ala103Val) polymorphisms with the risk of LC. Polymerase chain reaction- restriction fragment length polymorphism (
... Show More
Detecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulate
... Show MoreBackground: Oral squamous cell carcinoma (OSCC) is the most prevalent malignant neoplasm of the oral cavity and constitutes a major health problem in developing. In the last 30 years, the 5-year survival rate of patients with oral SCC has not improved despite advance in diagnostic techniques. To improve early diagnosis for this deadly disease, new biological markers are needed. HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. HOX gene expression has been described in several adult tissues, where they performed important roles in maintaining homeostasis. Few studies have suggested that HOXA1 plays a role in tumorigenesis. Besides bein
... Show MoreFor the most reliable and reproducible results for calibration or general testing purposes of two immiscible liquids, such as water in engine oil, good emulsification is vital. This study explores the impact of emulsion quality on the Fourier transform infrared (FT-IR) spectroscopy calibration standards for measuring water contamination in used or in-service engine oil, in an attempt to strengthen the specific guidelines of ASTM International standards for sample preparation. By using different emulsification techniques and readily available laboratory equipment, this work is an attempt to establish the ideal sample preparation technique for reliability, repeatability, and reproducibility for FT-IR analysis while still considering t
... Show MoreFree radicals are small extremely reactive species that have unpaired electrons. Free radicals include subgroups of reactive species, which are all a product of regular cellular metabolism. Oxidative stress happens when the free radicals production exceeds the capacity of the antioxidant system in the body’s cells.
The current review clarifies the prospective role of antioxidants in the inhibition and healing of diseases.
Information on oxidative stress, free radicals, reactive oxidant species, and natural and synthetic antioxidants was obta
The technology of subsurface soil water retention (SWRT) uses a polyethylene trough that is fixed under the root zone of the plant. It is a modern technology to increase the values of water use efficiency, plant productivity and saving irrigation water by applying as little irrigation water as possible. This study work aims at improving the crop yield and water use efficiency of a cucumber plant with less applied irrigation water by installing membrane trough below the soil surface. The field experiment was conducted in the Hawr Rajab District of Baghdad Governorate in Winter 2018 for testing various trickle irrigation systems. Two agricultural treatment plots were utilized in a greenhouse for the compa
... Show MoreThe technology of subsurface soil water retention (SWRT) uses a polyethylene trough that is fixed under the root zone of the plant. It is a modern technology to increase the values of water use efficiency, plant productivity and saving irrigation water by applying as little irrigation water as possible. This study work aims at improving the crop yield and water use efficiency of a cucumber plant with less applied irrigation water by installing membrane trough below the soil surface. The field experiment was conducted in the Hawr Rajab District of Baghdad Governorate in Winter 2018 for testing various trickle irrigation systems. Two agricultural treatment plots were utilized in a greenhouse for the comparison. Plot T1 has used a subsurface t
... Show More