Resveratrol, (RES), a phytoalexin, is well-known for its anti-inflammatory and anti-oxidant properties. SEB, a superantigen, is known to trigger ALI and cause mortality. In the current study, we tested the effect of RES in a dual-dose model of SEB exposure that triggers ALI and causes 100% mortality in C3H/HeJ-mice. The data revealed RES attenuated SEB-induced ALI and prevented mortality. Forty eight hours post-SEB exposure, lung-infiltrating mononuclear cells were tested for microRNA expression profile to determine the epigenetic regulation by resveratrol. SEB-activated splenocytes were pre-treated with 50 μM of RES or vehicle for metabolic profile analysis by measuring oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). We also noted significant decline in miR-193a in the lungs of RES-treated SEB group, which targeted and caused an increase in TGFβ2 and TGFβR3, potent inhibitors of T-cell proliferation, by using RT-PCR and validation by transfection studies. RES-induced downregulation of miR-193a also influenced the activity of mechanistic target of rapamycin (mTOR) as well as pyruvate kinase muscle isozyme2 (PKM2) genes, and caused RES-treated SEB-activated T cells to be quiescent metabolically in comparison to the energetic vehicle-treated SEB-activated T cells. Together, RES caused inhibition in the proliferation of SEB-activated T-cells by alterations in miR expression and metabolic profiles. (Supported by NIH grants P01AT003961, R01AT006888, R01ES019313, R01MH094755, P20GM103641 and R01AI129788).
Background Doxorubicin (DOX) is a potent antineoplastic agent used in treating various adult and pediatric cancers, but it tends to provoke dose-dependent cardiotoxicity. Ezetimibe (EZE), a cholesterol-lowering drug, has been reported to possess defensive actions against oxidative stress and inflammation, which are two of the main proposed mechanisms underlying the development of DOX-induced cardiotoxicity (DIC), hence, we aimed to inspect the possible protective effect of EZE against DIC in rats. Methods 24 adult male Wistar rats were allocated into four groups of six: control, DOX, 10 mg/kg EZE plus DOX and 20 mg/kg EZE plus DOX. At the end of the study, the experimental rats were anesthetized and blood samples were collected for b
... Show MoreThe Effect of Chicken Eggshell Extract on Microhardness of Artificially Induced Dental Erosion in Permanent Teeth (In Vitro Study), Shatha A Abbas*, Alhan A Qasim
Poly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free
This studies deals with investigated the potential of a Iraqi bentonite clay for the adsorption of bromo phenol red dye from contaminated water. Impulse adsorption experiments were performed. The contact time influence of initial dye concentration, temperature, pH, ionic strength, partical size adsorbent and adsorbent dosage on bromo phenol red adsorption are investigated in a series of batch adsorption experiments. Adsorption equilibrium data were analyzed and described by the Freundlich, Langmuir and temkin isotherms equations. Thermodynamic parameters inclusive the Gibbs free energy (∆G• ), enthalpy (∆H• ), and entropy (∆S• ), were also calculated. These parameters specified that adsorption of bromo phenol red onto bentonite
... Show MoreSpent hydrodesulfurization (Co-Mo/γ-Al2O3) catalyst generally contains valuable metals like molybdenum (Mo), cobalt (Co), aluminium (Al) on a supporting material, such as γ-Al2O3. In the present study, a two stages alkali/acid leaching process was conducted to study leaching of cobalt, molybdenum and aluminium from Co-Mo/γ-Al2O3 catalyst. The acid leaching of spent catalyst, previously treated by alkali solution to remove molybdenum, yielded a solution rich in cobalt and aluminium.
Liquid-liquid membrane extraction technique, pertraction, using three types of solvents (methyl isobutyl ketone, n-butyl acetate, and n-amyl acetate) was used for recovery of penicillin V from simulated fermentation broth under various operating conditions of pH value (4-6) for feed and (6-8) for receiver phase, time (0-40 min), and agitation speed (300-500 rpm) in a batch laboratory unit system. The optimum conditions for extraction were at pH of 4 for feed, and 8 for receiver phase, rotation speed of 500 rpm, time of 40 min, and solvent of MIBK as membrane, where more than 98% of penicillin was extracted.
