The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter variations, and exterior disturbance with input and output time delays as the generalized state, a scaling finite-time extended state observer (SFTESO) is constructed with a scaling gain for quickly estimating the unmeasured velocity and the generalized disturbances within a finite time. With the aid of the SFTESO, the robust FFTCC with the scaling gain is designed not only for ensuring finite-time convergence and strong robustness against time delays and disturbances but also for improving the speed of the convergence as a main novelty. Based on the Lyapunov theorem, the closed-loop stability of the overall SBW system is proven as a global uniform finite-time. Through examination across three specific scenarios, a comprehensive evaluation is aimed to assess the efficiency of the suggested controller strategy, compared with active disturbance rejection control (ADRC) and scaling ADRC (SADRC) methods across these three distinct driving scenarios. The simulated results have confirmed the merits of the proposed control in terms of a fast-tracking rate, small tracking error, and strong system robustness.
A Copper- Mullet walled Carbon Nanotube Cu/MWCNT composite coatings prepared by direct and pulse electrodeposition with various contents of MWCNT particles, using electrodeposition method from acidic sulfate bath. The effect of the current density, pulse frequency and particle loading (PL) of MWCNT particle in the electrolyte on the morphology and volume fraction Vol% of MWCNT in deposit were investigate. The experimental results indicated that the depositing condition affect on the microstructure of deposited copper and MWCNT Vol% in deposit. Also, the Vol% of MWCNT increases in deposit with particle loading (PL) increasing in the bath and increased with increased current density. Increasing MWCNTs in electrolyte produced increase
... Show MoreThe purpose of this paper is to gain a good understanding about wake region behind the car body due to the aerodynamic effect when the air flows over the road vehicle during its movement. The main goal of this study is to discuss the effect of the geometry on the wake region and the aerodynamic drag coefficient. Results will be achieved by using two different shapes, which are the fastback and the notchback. The study will be implemented by the Computational Fluid Dynamic (CFD) by using STAR-CCM+® software for the simulation. This study investigates the steady turbulent flow using k-epsilon turbulence model. The results obtained from the simulation show that the region of the air separation behind the vehicle
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3 rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM) in M technique wh
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet
... Show Moreproblem of the research is the decline of the role of urban space with time as an influential system in societal relations. The research aims to define indicators for achieving social interaction in the city, and to determine indicators for achieving integration in the urban space, and to study the relationship between the integration of urban space and community interaction over time. the research assumed that by distinguishing the social interaction space from the urban space and developing urban spaces in order to be truly interactive spaces, this will help us achieve social interaction and build a positive relationship between them, which enables us to achieve integration within the urban spaces leading to social interaction. Because
... Show MoreBackground: This in vitro study evaluated the fracture resistance of weakened endodontically treated premolars with class II MOD cavities restored with different composite restorations (Low-shrinkage Filtek P90, nanohybrid Filtek Z250 XT and SDR bulk fill). The type and mode of fracture were also assessed for all the experimental groups. Materials and Method: Fifty human adult maxillary premolar teeth were selected for this study. Standardized extensive class II MOD cavities with endodontic treatment were prepared for all teeth, except those that were saved as intact control. The teeth were divided into five groups of ten teeth each (n=10): (Group 1) intact control group, (Group 2) unrestored teeth with endodontic treatment, (Group 3) resto
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreThe paper establishes explicit representations of the errors and residuals of approximate
solutions of triangular linear systems by Jordan elimination and of general linear algebraic
systems by Gauss-Jordan elimination as functions of the data perturbations and the rounding
errors in arithmetic floating-point operations. From these representations strict optimal
componentwise error and residual bounds are derived. Further, stability estimates for the
solutions are discussed. The error bounds for the solutions of triangular linear systems are
compared to the optimal error bounds for the solutions by back substitution and by Gaussian
elimination with back substitution, respectively. The results confirm in a very
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More