The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter variations, and exterior disturbance with input and output time delays as the generalized state, a scaling finite-time extended state observer (SFTESO) is constructed with a scaling gain for quickly estimating the unmeasured velocity and the generalized disturbances within a finite time. With the aid of the SFTESO, the robust FFTCC with the scaling gain is designed not only for ensuring finite-time convergence and strong robustness against time delays and disturbances but also for improving the speed of the convergence as a main novelty. Based on the Lyapunov theorem, the closed-loop stability of the overall SBW system is proven as a global uniform finite-time. Through examination across three specific scenarios, a comprehensive evaluation is aimed to assess the efficiency of the suggested controller strategy, compared with active disturbance rejection control (ADRC) and scaling ADRC (SADRC) methods across these three distinct driving scenarios. The simulated results have confirmed the merits of the proposed control in terms of a fast-tracking rate, small tracking error, and strong system robustness.
Considerable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical tech
... Show MoreBackground: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to re
... Show MoreIn this research, a new technique is suggested to reduce the long time required by the encoding process by using modified moment features on domain blocks. The modified moment features were used in accelerating the matching step of the Iterated Function System (IFS). The main disadvantage facing the fractal image compression (FIC) method is the over-long encoding time needed for checking all domain blocks and choosing the least error to get the best matched domain for each block of ranges. In this paper, we develop a method that can reduce the encoding time of FIC by reducing the size of the domain pool based on the moment features of domain blocks, followed by a comparison with threshold (the selected threshold based on experience
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show MoreProchloperazine maleate (PCM) is one of the most prescribed phenothiazine. The purpose of the present research was to develop fast dissolving tablets of PCM with β-cyclodextrin inclusion complex. Tablets prepared by wet granulation with sublimation and by using different superdisintegrants type [ low-hydroxypropylcellulose LH21 (L-HPC LH21), carboxymethylcellulose calcium (ECG505), crospovidone (CP)], and different type of subliming agents (urea and ammonium bicarbonate (AB)). Tablets evaluated for its % friability, disintegration time, wetting time, hardness, content uniformity, weight variation, in vitro dissolution studies. For further enhancement of disintegration and dissolution, PCM orodispersible tablet were formula
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreIntelligent Transportation Systems (ITS) have been developed to improve the efficiency and safety of road transport by using new technologies for communication. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) are a subset of ITS widely used to solve different issues associated with transportation in cities. Road traffic congestion is still the most significant problem that causes important economic and productivity damages, as well as increasing environmental effects. This paper introduces an early traffic congestion alert system in a vehicular network, using the internet of things (IoT) and fuzzy logic, for optimizing the traffic and increasing the flow. The proposed system detects critical driving conditions, or any emerge
... Show MoreBackground: Restoration of root canal treated teeth with a permanent restoration affect in the success of endodontically treated teeth. This in vitro study was performed to evaluate and compare the fracture strength of endodontically treated teeth restored by using custom made zirconium posts and cores, prefabricated carbon fiber, glass fiber and zirconium ceramic posts. Materials and method: Forty intact human mandibular second premolars were collected for this study and were divided into five groups. Each group contains 8 specimens: Group1: Teeth restored with Carbon Fiber Posts; Group2: Teeth restored with Glass Fiber Posts; Group3: Teeth restored with Zirconium Ceramic prefabricated Posts; Group4: Teeth restored with Zirconium Posts
... Show MoreThe aim of this paper is to study the asymptotically stable solution of nonlinear single and multi fractional differential-algebraic control systems, involving feedback control inputs, by an effective approach that depends on necessary and sufficient conditions.