The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter variations, and exterior disturbance with input and output time delays as the generalized state, a scaling finite-time extended state observer (SFTESO) is constructed with a scaling gain for quickly estimating the unmeasured velocity and the generalized disturbances within a finite time. With the aid of the SFTESO, the robust FFTCC with the scaling gain is designed not only for ensuring finite-time convergence and strong robustness against time delays and disturbances but also for improving the speed of the convergence as a main novelty. Based on the Lyapunov theorem, the closed-loop stability of the overall SBW system is proven as a global uniform finite-time. Through examination across three specific scenarios, a comprehensive evaluation is aimed to assess the efficiency of the suggested controller strategy, compared with active disturbance rejection control (ADRC) and scaling ADRC (SADRC) methods across these three distinct driving scenarios. The simulated results have confirmed the merits of the proposed control in terms of a fast-tracking rate, small tracking error, and strong system robustness.
Abstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influ
... Show MoreIn this paper, construction microwaves induced plasma jet(MIPJ) system. This system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate by using flow meter, to diagnose microwave plasma optical emission spectroscopy(OES) was used to measure the important plasma parameters such as electron temperature (Te), residence time (Rt), plasma frequency (?pe), collisional skin depth (?), plasma conductivity (?dc), Debye length(?D). Also, the density of the plasma electron is calculated with the use of Stark broadened profiles
In this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increases in magnesium and aluminum targets but decreases in magnesium: aluminum alloy target, also show the electron density increase all the aluminum,
... Show MoreAbstract
Paraffin wax is utilized for the heat storage applications taking advantage from the high stored latent heat during the phase change (from solid to fluid) period. What isn't right with this procedure is that the wax has a little heat transfer rate because of its low thermal conductivity. The thermal conductivity improvement of the paraffin wax has been examined utilizing nano-material with high thermal conductivity. In the recent study, (Al2O3) nanoparticles with weights of 1, 2, and 3% of the paraffin wax were added to the paraffin wax. The Iraqi paraffin wax accessible at the local markets was utilized as a phase change material (PCM).
Many properties of the
... Show MoreIn this research, geopolymer mortar had to be designed with 50% to 50% slag and fly ash with and without 1% micro steel fiber at curing temperature of 240℃. The molarity of alkaline solution adjusted with 12 molar sodium hydroxid to sodium silicate was 2 to 1, reaspectivly. The heat of curing increased the geopolymerization proceses of geoplymer mortar, which led to increasing strength, giving the best result and early curing age. The heat was applied for two days by four hours each day. It was discovered in the impact test that the value first crack of each mix was somewhat similar, but the failure increased 72% for the mixture that did not contain fiber. For the energy observation results it was shown that the mixt
... Show MoreIn Iraq, there is a limited research work exploring the clinical pharmacists' role from the point of view of other healthcare professionals.
To investigate physicians' assessment of clinical pharmacy services at Baghdad hospitals, and compare junior physicians with senior physicians' point of view.
The study was conducted in twelve governmental hospitals in Baghdad, Iraq. Data was collected from a sample of two hundred physicians, and through a validated, self-administered questionnaire, which comprised twenty statements in addition to a non-personal information form that precedes the questionnaire
The study findings reveal a somewhat positive point of view towards clinical pharmacists' performance in
... Show MoreAbstract:
Current research has sought to apply the criteria of potential for altmizalaorbi model EFQM 2013 in assessing the performance of the Inspector General's Office/Ministry of health, so as to keep up with a modern and advanced management methods in the evaluation of performance, as well as to link performance to a citizen's life, and it takes him beyond the accepted service capabilities today, but of budget duties between dealers servicing responsibilities and future planning, financial control, competitiveness, human resources needs and maintaining quality and development, as well as the constant quest for continuous improvement, is the spirit of the principle underpinning the European Foundation Quality managemen
... Show More