Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different resolutions. By considering features from multiple levels, the detection algorithm can better capture both global and local characteristics of the manipulated regions, enhancing the accuracy of forgery detection. To achieve a high accuracy rate, this paper presents a variety of scenarios based on a machine-learning approach. In Copy-Move detection, artifacts and their properties are used as image features and support Vector Machine (SVM) to determine whether an image is tampered with. The dataset is manipulated to train and test each classifier; the target is to learn the discriminative patterns that detect instances of copy-move forgery. Media Integration and Call Center Forgery (MICC-F2000) were utilized in this paper. Experimental evaluations demonstrate the effectiveness of the proposed methodology in detecting copy-move. The implementation phases in the proposed work have produced encouraging outcomes. In the case of the best-implemented scenario involving multiple trials, the detection stage achieved a copy-move accuracy of 97.8 %.
Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show MoreAn investigation was conducted for the determination of the effects of the forming conditions in the production of Gamma Alumina catalyst support on the crushing strength property. Eight variables were studied , they are ;binder content which is the sodium silicate , Solvent content which is the water, speed of mixing , time of mixing, drying temperature , drying time , calcinations temperature and the calcinations time
Design of the experiments was made by using the response Surface method in Minitab 15 software which supply us 90 experiments .
The results of this investigation show that the crushing strength for the dried Gamma alumina extrudate was affected by the drying temperature and the drying time only and there is no inter
Objectives: The aim of this study to assess instructional labor support behaviors among laboring
women in teaching hospitals in Hilla city.
Methodology: A descriptive analytic study was concluded to select a sample purposely of one hundred
multipara laboring women in maternity hospital in Hilla city and data was collected through
questionnaire form during February (1
st to March 30th) 2014. A descriptive statistical method was used
to analyze the data.
Results: The result showed that the highest percentage of study sample was at age (20-24) years, most
of them was house wife, more than third graduate from primary school, and more than half of them
lived in rural area, (86%) of study sample delivered normal deli
Objective: The study aims at evaluating the psychological support and discharge plan from the hospital provided by nurses for woman undergone hysterectomy.
Methodology: The study uses descriptive design and non-probability (convenient) sample which is consisted of (40) nurses from (8) teaching hospitals in the City of Baghdad within the maternity wards. The study is carried out from 11 November 2020 to 27 June 2021. A observational tool is developed to evaluate the psychological support and the discharge plan after surgery. Content validity and internal consistency reliability are determined through pilot study. Data are collected through the use of the questionnaire and data are analyzed through the use of descriptive and inferentia
Back ground: Inadequate secretory transformation of the endometrium resulting from deficient ovarian progesterone secretion is a cause of infertility and recurrent abortion
in luteal phase defects (LPD) women. LPD are diagnosed in 20% of infertile patients and 60% of patients with recurrent abortion and 50% of anovulatory women.
Aim : The objective of the present study was to compare pregnancy outcome following sperm penetration assay (SPA), intrauterine insemination (IUI) and luteal support
therapy (LST) in infertile patients with unexplained infertility (UI) mild and marked LPD.
Materials and Methods: Men with normal semen analyses and positive sperm penetration assay scores were included in this St
Automated clinical decision support system (CDSS) acts as new paradigm in medical services today. CDSSs are utilized to increment specialists (doctors) in their perplexing decision-making. Along these lines, a reasonable decision support system is built up dependent on doctors' knowledge and data mining derivation framework so as to help with the interest the board in the medical care gracefully to control the Corona Virus Disease (COVID-19) virus pandemic and, generally, to determine the class of infection and to provide a suitable protocol treatment depending on the symptoms of patient. Firstly, it needs to determine the three early symptoms of COVID-19 pandemic criteria (fever, tiredness, dry cough and breat
... Show MoreSixteen water samples were collected from the operation units of the Al-Quds
power plant, north Baghdad city and the surrounding trocars, surface and
groundwater, and analyzed to assess the resulting pollution. The samples were
analyzed for heavy metals (As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, U and Zn) by
using inductively coupled plasma- mass spectrometry (ICP-MS). The results were
compared with local and international and standard limits. Heavy metals analysis of
the water samples shows that water of operation units and trocars have mean
concentrations of As, Cd, Cr, Cu, Mo, Pb, Sb, Se, U and Zn were within or lower
than the national and world limits, while Mn and Ni were higher than these limits.
Concentrat
This research Sought to identify the correlation relationships and the impact of each of the job description and perceived organizational support, Excellent Job performance of the heads of academic departments in the faculties of the University of Sulaymaniyah Iraqi Kurdistan Region, totaling (89) as President, and to achieve this was Default plan includes research variables as well as the formulation of a number of preparation fundamental assumptions, and researchers used a questionnaire for this purpose as a tool head of the collection of data and information, as it was distributed (80) copies, and the number of retrieved them (76) a copy of a valid statistical analysis, as well as conducting personal i
... Show More