Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different resolutions. By considering features from multiple levels, the detection algorithm can better capture both global and local characteristics of the manipulated regions, enhancing the accuracy of forgery detection. To achieve a high accuracy rate, this paper presents a variety of scenarios based on a machine-learning approach. In Copy-Move detection, artifacts and their properties are used as image features and support Vector Machine (SVM) to determine whether an image is tampered with. The dataset is manipulated to train and test each classifier; the target is to learn the discriminative patterns that detect instances of copy-move forgery. Media Integration and Call Center Forgery (MICC-F2000) were utilized in this paper. Experimental evaluations demonstrate the effectiveness of the proposed methodology in detecting copy-move. The implementation phases in the proposed work have produced encouraging outcomes. In the case of the best-implemented scenario involving multiple trials, the detection stage achieved a copy-move accuracy of 97.8 %.
The current study aims at using non-hatchable artemia eggs of local origin and making use of these eggs by decapsulating and presenting them as food for the larvae of the Cyprinus carpio as a source of animal protein with high nutritional value instead of throwing them away. The results showed that the second parameter (A2) was highly significant at the level (P≤0.05) in the growth rates of the larvae that were fed on decapsulated artemia eggs alone, and it was better than the two control parameters (A1), in which the larvae were fed with feed designated for Cyprinus carpio fish. It also outperformed the third parameter (A3), in which the feed was mixed with artemia eggs with 50% decapsulation, which also outperformed the control paramete
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
Each organization struggles to exploit each possible opportunity for gaining success and continuing with its work carrier. In this field, organization success can be concluded by fulfilling end user requirements combined with optimizing available resources usage within a specified time and acceptable quality level to gain maximum profit. The project ranking process is governed by the multi-criteria environment, which is more difficult for the governmental organization because other organizations' main target is maximizing profit constrained with available resources. The governmental organization should consider human, social, economic and many more factors. This paper focused on building a multi-criteria optimizing proje
... Show MoreWe define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.
Often phenomena suffer from disturbances in their data as well as the difficulty of formulation, especially with a lack of clarity in the response, or the large number of essential differences plaguing the experimental units that have been taking this data from them. Thus emerged the need to include an estimation method implicit rating of these experimental units using the method of discrimination or create blocks for each item of these experimental units in the hope of controlling their responses and make it more homogeneous. Because of the development in the field of computers and taking the principle of the integration of sciences it has been found that modern algorithms used in the field of Computer Science genetic algorithm or ant colo
... Show MoreThe distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.
Construction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w
Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le
... Show More