Viscosities (η) and densities (ρ) of atenolol and propranolol hydrochloride in water and in concentrations (0.05 M) and (0.1 M) aqueous solution of threonine have been used to reform different important thermodynamic parameters like apparent molal volumes fv partial molal volumes at infinite dilution fvo , transfer volume fvo (tr), the slop Sv , Gibbs free energy of activation for viscous flow of solution ΔG*1,2 and the B-coefficient have been calculated using Jones-Dole equation. These thermodynamic parameters have been predicted in terms of solute-solute and solute-solvent interaction.
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreA new Macrocyclic Schiff base ligand Bis[4-hydroxy(1,2-ethylene-dioxidebenzylidene) pheylenediamine] [H2L] and its complexes with (Co(II) , Ni(II) , Cu(II) , Zn(II) and Cd(II)) are reported . The ligand was prepared in two steps,in the first step a solution of (o-phenylene diamine) in methanol react under reflux with (2,4-dihydroxybenzylaldeyed) to give an (intermediatecompound) [Bis-1,2 (2,4-dihydroxybenzylediene)pheylinediamine] which react in the second step with (1,2- dichloro ethane) giving the mentioned ligand.Then the complexes were synthesis of adding of corresponding metal salts to the solution of the ligand in methanol under reflux with 1:1 metal to ligand ratio. On the basis of, molar conductance, I.R., UV-Vis, chloride content a
... Show MoreIn the present study, a low cost adsorbent is developed from the naturally available sawdust
which is biodegradable. The removal capacity of chromium(VI) from the synthetically prepared
industrial effluent of electroplating and tannery industrial is obtained.
Two modes of operation are used, batch mode and fixed bed mode. In batch experiment the
effect of Sawdust dose (4- 24g/L) with constant initial chromium(VI) concentration of 50 mg/L and
constant particle size less than1.8 mm were studied.
Batch kinetics experiments showed that the adsorption rate of chromium(VI) ion by Sawdust
was rapid and reached equilibrium within 120 min. The three models (Freundlich, Langmuir and
Freundlich-Langmuir) were fitted to exper
In most manufacturing processes, and in spite of statistical control, several process capability indices refer to non conformance of the true mean (µc ) from the target mean ( µT ), and the variation is also high. In this paper, data have been analyzed and studied for a blow molded plastic product (Zahi Bottle) (ZB). WinQSB software was used to facilitate the statistical process control, and process capability analysis and some of capability indices. The relationship between different process capability indices and the true mean of the process were represented, and then with the standard deviation (σ ), of achievement of process capability value that can reduce the standard deviation value and improve production out of theoretical con
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show More