This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThe corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.
The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance
larization modulation plays an important role in polarization encoding in quantum key distribution. By using polarization modulation, quantum key distribution systems become more compact and more vulnerable as one laser source is used instead of using multiple laser sources that may cause side-channel attacks. Metasurfaces with their exceptional optical properties have led to the development of versatile ultrathin optical devices. They are made up of planar arrays of resonant or nearly resonant subwavelength pieces and provide complete control over reflected and transmitted electromagnetic waves opening several possibilities for the development of innovative optical components. In this work, the Si nanowire metasurface
... Show MoreThis paper presents a method to organize memory chips when they are used to build memory systems that have word size wider than 8-bit. Most memory chips have 8-bit word size. When the memory system has to be built from several memory chips of various sizes, this method gives all possible organizations of these chips in the memory system. This paper also suggests a precise definition of the term “memory bank” that is usually used in memory systems. Finally, an illustrative design problem was taken to illustrate the presented method practically.
The purpose of this research is defining the main factors influencing on decision of management system on sensitive data in cloud. The framework is proposed to enhance management information systems decision on sensitive information in cloud environment. The structured interview with several security experts working on cloud computing security to investigate the main objective of framework and suitability of instrument, a pilot study conducts to test the instrument. The validity and reliability test results expose that study can be expanded and lead to final framework validation. This framework using multilevel related to Authorization, Authentication, Classification and identity anonymity, and save and verify, to enhance management
... Show MoreThis paper studies the combination of fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. This optimizes the accuracy of the dynamic response and by providing higher level of damping, basically minimizes the wanted stiffness of the structure while at the same time optimizing the achievement.
The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximu
... Show More