Preferred Language
Articles
/
9BdPS5ABVTCNdQwCG4XI
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Sun Mar 25 2018
Journal Name
Biomedical And Pharmacology Journal
Apical Extrusion of Debris and Irrigants After using Different Irrigation Needles and Systems With Different Depth of Penetration (A Comparative Study)
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Tue Dec 29 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Impact of Electronic Payment systems on the Profitability of Banks: An applied research on a sample of Iraqi commercial banks
...Show More Authors

Due to technological developments in the Iraqi banking sector, which is the use of electronic payment systems within the banking infrastructure. This has led to speed and accuracy in the completion of transactions, reduced costs, increased revenues and efficiency. This research examines the challenges and risks facing the Iraqi banking sector as a result of its use of electronic payment systems. And show its impact on the profitability of commercial banks. The research was based on the main hypothesis that there is a statistically significant moral impact relationship between electronic payment systems and the profitability of banks. Iraqi commercial banks were chosen as a research community, All Iraqi commercial banks that parti

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 22 2020
Journal Name
Collaboration And Integration In Construction, Engineering, Management And Technology
A Hybrid Conceptual Model for BIM Adoption in Facilities Management: A Descriptive Analysis for the Collected Data
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Biocatalysis And Agricultural Biotechnology
Determination of Diazinon in fruit samples using electrochemical sensor based on carbon nanotubes modified carbon paste electrode
...Show More Authors

View Publication
Scopus (52)
Crossref (47)
Scopus Crossref
Publication Date
Fri Jun 10 2022
Journal Name
Eurasian Chemical Communications
Detection of lead and cadmium in types of chips from local markets in Baghdad
...Show More Authors

View Publication
Scopus (1)
Scopus
Publication Date
Tue May 05 2015
Journal Name
The 16th Science Conference/ College Of Basic Education.
Detection of Microbial and Chemical Contamination in Canned Meat Available in Baghdad Local Markets
...Show More Authors

Publication Date
Tue Jun 03 2025
Journal Name
Journal Of Animal Health And Production
Prevalence of Toxocara spp. in Cats and Detection of Intestinal Helminth Infections in Humans
...Show More Authors

This study aimed to investigate the prevalence of intestinal helminth infections in humans and detect Toxocara spp. in cats, with a focus on assessing the impact of age and gender on infection rates. Traditional diagnostic methods have historically limited the accurate identification of helminth infections in humans. Analysis of 450 human stool samples revealed an overall helminth infection rate of 5.7% using conventional techniques. The specific infection rates were 0.4% for Strongyloides stercoralis, 0.6% for Schistosoma mansoni, 1.7% for Hymenolepis nana, and 2.8% for Ascaris lumbricoides. Notably, no infections were recorded in the 30–39 and ≥40-year age groups, while the highest infection rate (16.3%, P≤0.01) was observed in indi

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Webology
Information Sources and their Role in E-learning from Iraqi College Students’ Viewpoint
...Show More Authors

The study aims at identifying the sources of information and explaining their role in e-learning from the viewpoint of the Iraqi college students. The researchers relied on the descriptive method of the survey method to collect data and know the point of view of undergraduate students from the Department of Information in the College of Arts / Tikrit University and the Department of Quranic Studies at the College of Arts / University of Baghdad. The questionnaire was used as an instrument of the study, the research sample is (120) students; each section has (60) male and female students. The study concluded that there are many types and forms of information sources that students receive through electronic educational platforms from text con

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Analysing errors in learning the preasent continuous tense:Associating interference with strategy of instruction
...Show More Authors

0

View Publication Preview PDF
Publication Date
Wed May 03 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par

... Show More
View Publication
Crossref