In light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimensional Convolutional Neural Network Hybrid Model (1D-CNNHM). The MUCT database was considered for training and evaluation. The performance, in terms of classification, of the J48 model reached 96.01% accuracy whereas the DL model that merged LDA with MI and ANOVA reached 100% accuracy. Comparing the proposed models with other works reflects that they are performing very well, with high accuracy and low processing time.
DeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreThe physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in t
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
The main goal of the current research is to know -Environmental problems included in the content of the two science books (chemistry units) for intermediate stage
A list of environmental problems had been prepared and consisting of (8) main areas which are (air and atmosphere pollution, water pollution, soil pollution, energy, disturbance of biodiversity and environmental balance, waste management, food and medicinal pollution, investment of mineral wealth). Of which (60) sub-problems, at that time the researcher analyzed the two science books (two chemistry units) for the intermediate stage of the academic year (2020-2021) in light of the list that was prepared, and the validity and consisten
... Show MoreThis study aimed to clarify the importance of ecological taxation in achieving sustainable development, by analyzing a set of economic measures such as taxes, taxes levied by the legislation in the field of ecology, to fight against pollution. And we tried to evaluate this initiative in Algeria. The results of the study showed that economic measures of ecological taxation contribute to achieving sustainable development, and Although Algeria has adopted a series of ecological tax mechanisms, it is far from keeping pace with developments in this area.
Abstract: This research aims to investigate and analyze the most pressing issues facing the Iraqi economy, namely economic stability and inclusive growth Consequently, the present study investigates the effect of inflation and unemployment, which are significant contributors to economic instability, on inclusive growth dimensions such as GDP, education, health, governance, poverty, income inequality, and environmental performance. From 1991 to 2021, secondary data were collected using World Bank Indicators (WDI) and Organization for Economic Cooperation and Development (OECD) databases. The researchers also employed the autoregressive distributed lag (ARDL) model to determine the relationship between variables. The study revealed that fluct
... Show More