In light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimensional Convolutional Neural Network Hybrid Model (1D-CNNHM). The MUCT database was considered for training and evaluation. The performance, in terms of classification, of the J48 model reached 96.01% accuracy whereas the DL model that merged LDA with MI and ANOVA reached 100% accuracy. Comparing the proposed models with other works reflects that they are performing very well, with high accuracy and low processing time.
COVID-19 is a disease that has abnormal over 170 nations worldwide. The number of infected people (either sick or dead) has been growing at a worrying ratio in virtually all the affected countries. Forecasting procedures can be instructed so helping in scheming well plans and in captivating creative conclusions. These procedures measure the conditions of the previous thus allowing well forecasts around the state to arise in the future. These predictions strength helps to make contradiction of likely pressures and significances. Forecasting procedures production a very main character in elastic precise predictions. In this case study used two models in order to diagnose optimal approach by compared the outputs. This study was introduce
... Show MoreIn this study, we tackle the understudied area of Artificial Intelligence (AI) and its role in examining how modern revolutions may affect political systems across the Middle Eastern region. despite hundreds of studies documenting Middle Eastern uprisings over the past three decades, there has been little effort to harness AI to better understand or predict these multifaceted events. This study seeks to address this gap by assessing the performance of AI-intelligence in analyzing (broadly) revolutionary processes and their effects on regional political systems. The research uses a mixedmethod methodology that involves a systematic literature review of contemporary scholarly articles, and an analytics study using AI tools. Our results show t
... Show MoreThe deficit of the federal budget and the structural imbalances suffered by the Iraqi economy has affected the direction of research towards suggesting steps and mechanisms can be relied upon in the near term to form a broader base of non-oil revenues aimed at achieving a balanced budget, and to proceed to reform the financial situation, In reducing their financial dictates, whether capital or operational, which lead to significant financial and economic consequences. This also requires that the Iraqi political elite have the real will, strategic vision and full awareness that the implementation of these reforms has potential social and economic effects, with long-term measures to be taken. The aim is not only to reform the finan
... Show MoreA QR code is a type of barcode that can hold more information than the familiar kind scanned at checkouts around the world. The “QR” stands for “Quick Response”, a reference to the speed at which the large amounts of information they contain can be decoded by scanners. They are being widely used for advertising campaigns, linking to company websites, contest sign-up pages and online menus. In this paper, we propose an efficient module to extract QR code from background and solve problem of rotation in case of inaccurate image taken from mobile camera.
Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreWith the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review
... Show MoreIn the presence of deep submicron noise, providing reliable and energy‐efficient network on‐chip operation is becoming a challenging objective. In this study, the authors propose a hybrid automatic repeat request (HARQ)‐based coding scheme that simultaneously reduces the crosstalk induced bus delay and provides multi‐bit error protection while achieving high‐energy savings. This is achieved by calculating two‐dimensional parities and duplicating all the bits, which provide single error correction and six errors detection. The error correction reduces the performance degradation caused by retransmissions, which when combined with voltage swing reduction, due to its high error detection, high‐energy savings are achieved. The res
... Show MoreABSTRACT: BACKGROUND: The main goal of facelift surgery is to reduce the effect of aging by reposition of face soft tissue in to more youthful orientation. There are many methods for SMAS plication which had different design and vector of pull. AIM OF STUDY: To evaluate the effectiveness and longitivity of 7 shaped SMAS plication in facelift. PATIENT AND METHODS: From January 2020 to march 2021, 10 female patients with age (45-60) years were presented with facial sagging, those patients were subjected to subcutaneous facelift with 7 shaped SMAS plication with fat greft in Al-Shaheed Ghazi Al-Harri Hospital and Baghdad burn medical center at Baghdad medical complex. RESULTS: The average follow up period was 6 to 12 months. The mean operative
... Show More