The presentwork is a theoretical study in the field of charged particle optics. It concentrates on the design of electrostatic enzil lens for focusing charge particles beams, using inverse method in designingthe electrostatic lens. The paraxial ray equation was solved to obtain the trajectory of the particles, the optical properties such as the focal length and spherical and chromatic aberration coefficients were determined. The shape of the electrode of the electrostatic lens were determined by solving poison equation and the results showed low values of spherical and chromatic aberrations, which are considered as good criteria for good design.
The charge transfer at C23H17F8N8O2PRu, C44H30BF4N5O4Ru, C56H52CL5N5OOsP2 and C76H88F80N24O11P10Ru4 nitrosyl complexes are investigation and studies theoretically using the quantum consideration. Charge transfer behavior largely rely to the electric properties of nitrosyl complexes system whose depending on the main important parameters for the transmission rate constant such that: orientation transition energy, overlapping coupling coefficient, driving force energy, height barrier and Temperature T (K). Data results have been evaluated using a MATLAB program. Results show that rate of charge transfer increases due to increases the orientation transition energy.
Abstract We have been studied and analysis the electronic current at the interfaces of Au/PTCDA system according to simple quantum mode for the electronics transition rate due to postulate quantum theory. Calculation of electronic current were performed at interface of Au/PTCDA as well as for investigation the feature of electronic density at this devices. The transition of electronic current study under assume the electronic state of Au and PTCDA were continuum and the states of electrons must be closed to energy level for Au at Fermi state, and the potential at interface feature depended on structure of Au and PTCDA material. The electronic transition current feature was dependent on the driving force energy that results of absorption ene
... Show MoreA cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the theoretical and experimental data. A good ag
... Show MoreThe fouling depositions of crude oil stream were studied theoretically in a shell and tube heat exchanger to investigate the effect of depositions on the heat transfer process. The employed heat exchanger was with steam flowing in the inner tubes and crude oil in the shell at different velocities and bulk temperatures. It is assumed that fouling occurs only on the heated stream side (crude oil). The analysis was carried out for turbulent flow heat transfer conditions with wide range of Reynolds number, bulk temperature and time. Many previously proposed models for fouling resistance were employed to estimate a new model for fouling rate. It is found that the fouling rate and consequently the heat transfer coefficient were affected by Rey
... Show MoreAA3003-H14 aluminum alloy plates were welded by friction stir welding and TIG welding.
Fatigue properties of the welded joints were evaluated based on the superior tensile properties for
FSW at 1500 rpm rotational speed and 80 mm/min welding speed. However, there is not much
information available on effect of welding parameters with evolution of fatigue life of friction stir
welds. The present study experimentally analyzed fatigue properties for base, FSW, and TIG welds
of AA 3003-H14 aluminum alloy. Fatigue properties of FSW joints were slightly lower than the
base metal and higher than TIG welding.
This study presents the effect of laser energy on burning loss of magnesium from the holes' drilled in aluminum alloy 5052. High energy free running pulsed Nd:Glass laser of 300 µs pulse duration has been used to perform the experiments. The laser energy was varied from 1.0 to 8.0 Joules, The drilling processes have been carried out under atmospheric pressure and vacuum inside a specially designed chamber. Microhardness of the blind drilled holes has been investigated .The results indicated that the magnesium loss could be manipulated by adjusting the focusing conditions of the laser beam. Almost, the obtained holes were free of cracks with low taper and low sputter deposition. .The holes performed under atmospheric conditions have high
... Show MoreThe study was conducted at the College of Agricultural Engineering Sciences - University of Baghdad in 2022. It aimed to improve the growth of the European black Henbane plant (