In 1939, the Japanese scientist Michio Takaoka first mentioned resveratrol from Veratrum grandiflorum O. Loes. Majority of plants, such as grapes, berries, and peanuts, are significant sources of resveratrol, a well-known polyphenolic. resveratrol (RV) is noted for its links to several health care benefits, including glucose metabolism, anti-aging, cardioprotective, neuroprotective, antitumor, antidiabetic, and antioxidant effects. Importantly, there have been reports of promising therapeutic qualities in atherosclerosis, dementia, and various malignancies. These properties are controlled through a number of cooperative techniques, which control inflammation besides the effects of oxidative stress and cell death. However, circulating resveratrol is rapidly broken down, according to pharmacokinetic study data. It prompts questions regarding the physiological significance of the high concentrations commonly employed in in vitro studies. To find out if resveratrol or its metabolites accumulate in tissues, further investigation is needed.
1,3,4-oxadiazole-5-thion ring (2) successfully formed at position six of 2-methylphenol and five of their thioalkyl (3a-e). Furthermore 6-(5-(Aryl)-1,3,4-oxadiazol-2-yl)-2-methylphenol (5a-i) were formed at position six by two method. The first method was from cyclization their corresponding hydrazones (4a-e) of 2-hydroxy-3-methylbenzohydrazide (1) using bromine in glacial acetic acid. The second method was from cyclization the hydrazide with aryl carboxylic acid in the presence of phosphorusoxy chloride. The newly synthesized compounds were characterized from their IR, NMR and mass spectra. The antioxidant properties of these compounds were screened by 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assay
... Show More1, 3, 4-oxadiazole-5-thion ring (2) successfully formed at position six of 2-methylphenol and five of their thioalkyl (3a-e). Furthermore 6-(5-(Aryl)-1, 3, 4-oxadiazol-2-yl)-2-methylphenol (5a-i) were formed at position six by two method. The first method was from cyclization their correspondinghydrazones (4a-e) of 2-hydroxy-3-methylbenzohydrazide (1) using bromine in glacial acetic acid. The second method was from cyclization the hydrazide with aryl carboxylic acid in the presence of phosphorusoxy chloride. The newly synthesized compounds were characterized from their IR, NMR and mass spectra. The antioxidant properties of these compounds were screened by 2, 2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) a
... Show MoreToxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by r
... Show MoreToxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic perform
... Show MoreThe economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various
... Show MoreManganese dioxide rotating cylinder electrode prepared by anodic deposition on a graphite substrate using MnSO4 solution in the presence of 0.918 M of H2SO4. The influence of different operational parameters (MnSO4 concentration, current density, time, and rotation speed) on the structure, and morphology of MnO2 deposit film was examined widely. The structure and crystal size determined by X-ray diffraction (XRD), the morphology examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The γ-MnO2 obtained as the main product of the deposition process. It found that the four parameters have a significant influence on the structure, morphology, and roughness of the prepared MnO2 deposit. The crystal size in
... Show MoreThis work presents a design for a pressure swing adsorption process (PSA) to separate oxygen from air with approximately 95% purity, suitable for different numbers of columns and arrangements. The product refill PSA process was found to perform 33% better (weight of zeolite required or productivity) than the pressure equalization process. The design is based on the adsorption equilibrium of a binary mixture of O2 and N2 for two of the most commonly used adsorbents, 5A & 13X, and extension from a single column approach. Zeolite 13X was found to perform 6% better than zeolite 5A. The most effective variables were determined to be the adsorption step time and the operational pressure. Increasing the adsorption step
... Show MoreThe research aims to clarify the response of the GDP to the M1 shock. It includes access to the results using standard methods, where the standard model was built according to quarterly data using the program STATA 17. According to the joint integration model ARDL, the research found a long-term equilibrium positive for the relationship between GDP and the money supply in Iraq, as the change in the money supply by a certain percentage will lead to a change in GDP by about 71% of that percentage. In the event of a shock in the Iraqi economy, the impact of the M1 will differ from what it was before the shock, as the shock will increase its effectiveness towards GDP by about 10% more than before the shock. At the same time, the relationship
... Show MoreThe research emphasizes importance of preliminary drawings in design of any product. Therefore, using of simulation as tools for visual thinking in developing drawing and design skills. So that practice of drawing by hand, considering shape of ideas in first stage of visualizations, and practice of its techniques and continuous training.
Hence, the research problem arose with the role of simulation method for developing preliminary sketches in the sample of students of the Product Design Department at the College of Design and Art, PNU, as it is important tool for visual thinking that helps the designer in designing and producing innovative artistic works.
Therefore, the research axes, a number of findings and recommendations were
The exploitation of obsolete recyclable resources including paper waste has the advantages of saving resources and environment protection. This study has been conducted to study utilizing paper waste to adsorb phenol which is one of the harmful organic compound byproducts deposited in the environment. The influence of different agitation methods, pH of the solution (3-11), initial phenol concentration (30-120ppm), adsorbent dose (0.5-2.5 g) and contact time (30-150 min) were studied. The highest phenol removal efficiency obtained was 86% with an adsorption capacity of 5.1 mg /g at optimization conditions (pH of 9, initial phenol concentration of 30 mg/L, an adsorbent dose of 2 g and contact time of 120min and at room temperature).
... Show More