In 1939, the Japanese scientist Michio Takaoka first mentioned resveratrol from Veratrum grandiflorum O. Loes. Majority of plants, such as grapes, berries, and peanuts, are significant sources of resveratrol, a well-known polyphenolic. resveratrol (RV) is noted for its links to several health care benefits, including glucose metabolism, anti-aging, cardioprotective, neuroprotective, antitumor, antidiabetic, and antioxidant effects. Importantly, there have been reports of promising therapeutic qualities in atherosclerosis, dementia, and various malignancies. These properties are controlled through a number of cooperative techniques, which control inflammation besides the effects of oxidative stress and cell death. However, circulating resveratrol is rapidly broken down, according to pharmacokinetic study data. It prompts questions regarding the physiological significance of the high concentrations commonly employed in in vitro studies. To find out if resveratrol or its metabolites accumulate in tissues, further investigation is needed.
The rapid and enormous growth of the Internet of Things, as well as its widespread adoption, has resulted in the production of massive quantities of data that must be processed and sent to the cloud, but the delay in processing the data and the time it takes to send it to the cloud has resulted in the emergence of fog, a new generation of cloud in which the fog serves as an extension of cloud services at the edge of the network, reducing latency and traffic. The distribution of computational resources to minimize makespan and running costs is one of the disadvantages of fog computing. This paper provides a new approach for improving the task scheduling problem in a Cloud-Fog environme
In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreIntroduction and Aim: The pro-inflammatory cytokine IL-39, a member of the IL-12 family plays a key role in the inflammatory response by modulating immune cell activity and inflammation. A literature search shows no study undertaken for the effect of IL-39's on arthritis so far. Hence, the purpose of this study was to investigate the role of IL-39 in rheumatoid arthritis. Materials and Methods: This study involved 80 patients with rheumatoid arthritis registered at the Rheumatology Clinic at Baghdad teaching hospital. The patients were divided into three groups based on treatments received. Group 1 included patients who were not on any treatment for arthritis, Group 2 with patients on hydroxychloroquine and or prednisone treatment,
... Show MoreNon-additive measures and corresponding integrals originally have been introduced by Choquet in 1953 (1) and independently defined by Sugeno in 1974 (2) in order to extend the classical measure by replacing the additivity property to non-additive property. An important feature of non –additive measures and fuzzy integrals is that they can represent the importance of individual information sources and interactions among them. There are many applications of non-additive measures and fuzzy integrals such as image processing, multi-criteria decision making, information fusion, classification, and pattern recognition. This paper presents a mathematical model for discussing an application of non-additive measures and corresp
... Show More