Preferred Language
Articles
/
8xf95JEBVTCNdQwCiJsp
Using Micro-Ceramic as an Abrasive Material to Remove Surface Roughness by Magnetic Abrasive Finishing
...Show More Authors

Due to the rapid advancement of technology and the technology of things, modern industries start to need a highprecision equipment and surface finishing, so many finishing processes began to develop. One of the modern processes is Magnetic Abrasive Finishing (MAF), which is a high-precision process for internal and external finishing under the influence of a magnetic field of abrasive particles. Boron Carbide (B4C) ceramics was tested by mixing it with iron (Fe) and produced abrasive particles to reduce the intensity of scraping on the surface, reduce the economic cost and achieve a high finishing addition to remove the edges at the same time. The material selected for the samples was mild steel (ASTM E415) under (Quantity of Abrasives, Machining Time and working gap) operating conditions.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
The Influence of the Magnetic Abrasive Finishing System for Cylindrical Surfaces on the Surface Roughness and MRR
...Show More Authors

Abstract

Magnetic abrasive finishing (MAF) is one of the advanced finishing processes, which produces a high level of surface quality and is primarily controlled by a magnetic field. This paper study the effect of the magnetic abrasive finishing system on the material removal rate (MRR) and surface roughness (Ra) in terms of magnetic abrasive finishing system for eight of input parameters, and three levels according to Taguchi array (L27) and using the regression model to analysis the output (results). These parameters are the (Poles geometry angle, Gap between the two magnetic poles, Grain size powder, Doze of the ferromagnetic abrasive powder, DC current, Workpiece velocity, Magnetic poles velocity, and Finishi

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 24 2024
Journal Name
Journal Of Engineering
Technological Analysis of Flat Surface Conditions by Magnetic Abrasive Finishing Method (MAF)
...Show More Authors

This study introduced the effect of using magnetic abrasive finishing method (MAF) for finishing flat surfaces. The results of experiment allow considering the MAF method as a perspective for finishing flat surfaces, forming optimum physical mechanical properties of surfaces layer, removing the defective layers and decreasing the height of micro irregularities. Study the characteristics which permit judgment parameters of surface quality after MAF method then comparative with grinding

View Publication
Publication Date
Wed Dec 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Improvement of Surface Roughness Quality for Stainless Steel 420 Plate Using Magnetic Abrasive Finishing Method
...Show More Authors

     An experimental study was carried out to improve the surface roughness quality of the stainless steel 420 using magnetic abrasive finishing method (MAF). Four independent operation parameters were studied (working gap, coil current, feed rate, and table stroke), and their effects on the MAF process were introduced. A rotating coil electromagnet was designed and implemented to use with plane surfaces. The magnetic abrasive powder used was formed from 33%Fe and 67% Quartz of (250µm mesh size). The lubricant type SAE 20W was used as a binder for the powder contents. Taguchi method was used for designing the experiments and the optimal values of the selected parameters were found. An empirical equation representing the r

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
ptimization the Parameters of Magnetic Abrasive Process Using Taguchi Method to Improve the Surface Roughness
...Show More Authors

Abstract  

Magnetic abrasive finishing (MAF) process is one of non-traditional or advanced finishing methods which is suitable for different materials and produces high quality level of surface finish where it uses magnetic force as a machining pressure. A set of experimental tests was planned according to Taguchi orthogonal array (OA) L27 (36) with three levels and six input parameters. Experimental estimation and optimization of input parameters for MAF process for stainless steel type 316 plate work piece, six input parameters including amplitude of tooth pole, and number of cycle between teeth, current, cutting speed, working gap, and finishing time, were performed by design of experiment

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Journal Of Engineering
Statistical Analysis of Metal Removal during Magnetic Abrasive Finishing Process
...Show More Authors

This work aims to provide a statistical analysis of metal removal during the Magnetic Abrasive Finishing process (MAF) and find out the mathematical model which describes the relationship between the process parameters and metal removal, also estimate the impact of the parameters on metal removal. In this study, the single point incremental forming was used to form the truncated cone made of low carbon steel (1008-AISI) based on the Z-level tool path. Then the finishing was accomplished using a magnetic abrasive process based on the Box-Behnken design of the experiment using Minitab 17 software was used to finish the surface of the formed truncated cone. The influences of different parameters (feed rate, machining step s

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Dec 24 2024
Journal Name
Al-nahrain Journal For Engineering Sciences
The Effect of Magnetic Abrasive Finishing on the Flat Surface for Ferromagnetic and non-Ferromagnetic materials
...Show More Authors

Magnetic Abrasive Finishing (MAF) is an advanced finishing method, which improves the quality of surfaces and performance of the products. The finishing technology for flat surfaces by MAF method is very economical in manufacturing fields an electromagnetic inductor was designed and manufactured for flat surface finishing formed in vertical milling machine. Magnetic abrasive powder was also produced under controlled condition. There are various parameters, such as the coil current, working gap, the volume of powder portion and feed rate, that are known to have a large impact on surface quality. This paper describes how Taguchi design of experiments is applied to find out important parameters influencing the surface quality generated during

... Show More
View Publication
Publication Date
Mon Dec 25 2017
Journal Name
Al-khwarizmi Engineering Journal
Utilizing a Magnetic Abrasive Finishing Technique (MAF) Via Adaptive Nero Fuzzy(ANFIS)
...Show More Authors

 Abstract

An experimental study was conducted for measuring the quality of surface finishing roughness using magnetic abrasive finishing technique (MAF) on brass plate which is very difficult to be polish by a conventional machining process where the cost is high and much more susceptible to surface damage as compared to other materials. Four operation parameters were studied, the gap between the work piece and the electromagnetic inductor, the current that generate the flux, the rotational Spindale speed and amount of abrasive powder size considering constant linear feed movement between machine head and workpiece. Adaptive Neuro fuzzy inference system  (ANFIS) was implemented for evaluation of a serie

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 19 2019
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Material Removal Rate and Temperature in Magnetic Abrasive Finishing Process for Stainless Steel 304
...Show More Authors

The effect of the magnetic abrasive finishing (MAF) method on the temperature rise (TR), and material removal rate (MRR) has been investigated in this paper. Sixteen runs were to determine the optimum temperature in the contact area (between the abrasive powder and surface of workpiece) and the MRR according to Taguchi orthogonal array (OA). Four variable technological parameters (cutting speed, finishing time, working gap, and the current in the inductor) with four levels for each parameter were used, the matrix is known as a L16 (44) OA. The signal to noise ratio (S/N) ratio and analysis of the variance (ANOVA) were utilized to analyze the results using (MINITAB17) to find the optimum condition and identify the significant p

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Study of the Effect of Magnetic Abrasive Finishing on the Material Removal of AA1100 Aluminum Alloy
...Show More Authors

This study evaluates the performance of magnetic abrasive finishing (MAF) of aluminum alloy in terms of achieving materials removal (MR). A vertical milling machine is used to perform the finishing process using a developed MAF unit that consists of an inductor made out of a 150 mm long and 20 mm diameter iron core wound with 1500 turns and 0.5 mm copper wire. The commutator and magnetic pole are attached at the top and bottom of the inductor, respectively. The required current is supplied using a DC power supply. The South Pole workpiece is a 100×50×3 mm3 plate of AA 1100 aluminum alloy, whereas the magnetic pole represented the North Pole. Pole rotational speed, applied current, and abrasive finishing time was selected as

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
Abrasive Wear Characteristics of Composite Material (AA 7075 / SiC) Synthesized by Stir Casting
...Show More Authors

Aluminum Metal Matrix Composites (ALMMCs) was prepared by using stir casting technique for AA 7075 aluminum alloy as a matrix reinforced with SiC particles at various percentages (3, 6, 9 and 12 wt. % ) and 75µm in grain size. The prepared composite material can be used for many applications such as aerospace, automobiles and many industrial sectors. Abrasive wear test was carried out by two stages: the first stage was done by changing the emery papers at various grit sizes 180, 320, 500, and 1000µm with constant applied load 15N. While the second stage was carried out by changing the applied loads 5, 10, 15, 20 and 25N with constant emery paper at 320 µm grit size. Microstructure examination, hardness test and roughn

... Show More
View Publication Preview PDF
Crossref