Recently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical. RF powered devices including sensor nods can be used potentially in ultra-low-power areas to extend the life battery span [4]. Moreover, modern biomedical implantable devices require power source channels for charging to prolong the lifetime of the implanted device and reduce the chances of battery replacements [5]. Furthermore, the ambient electromagnetic energy recycling possibility in dense urban zones population was significantly explored in [6]. Therefore, power conversion circuits to extract enough DC power from the incident electromagnetic waves for passive devices become urgent demand [7]. RF energy harvesters, generally, are consistent with an antenna, a power management circuit, and a rectifier [3]. The antenna part is the responsible element for collecting the RF energy from radiating sources. The appropriate antenna design is the one with a wide bandwidth of omnidirectional radiation patterns to collect the energy from a different direction at any frequency [8].
The characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
This paper presents the design, construction and investigates an experimental study of a parabolic Trough Solar Collector (PTSC). It is constructed of multi – piece glass mirror to form the parabolic reflector (1.8 m ? 2.8 m) its form were checked with help of a laser and carbon steel rectangular as receiver. Sun tracker has been developed (using two – axis) to track solar PTSC according to the direction of beam propagation of solar radiation. Using synthetic oil as a heat transfer its capability to heat transfer and load high temperature (?400 oc). The storage tank is fabricated with stainless steel of size 50 L. The experimental tests have been carried out in Baghdad climatic conditions (33.3o N, 44.4o E) during selective days of the
... Show MoreEvaluation was carried out on the existing furrow irrigation system located in an open agricultural field within Hor Rajabh Township, south of Baghdad, Iraq (latitude: 33°09’ N, longitude: 44°24’ E). Two plots were chosen for comparison: treatment plot T1, which used subsurface water retention technology (SWRT) with a furrow irrigation system. While the treatment plot T2 was done by using a furrow irrigation procedure without SWRT. A comparison between the two treatment plots was carried out to study the efficiency of the applied water on crop yield. In terms of agricultural productivity and water use efficiency, plot T1 outperformed plot T2, according to the study’s final fin
Receipt date:3/13/2021 accepted date:5/26/2021 Publication date:12/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
energy is one of the strategic resources within international politics, and this is through the existing competition between the international powers on it, and the global powers have begun to rely on interest in new areas, such as import, depending on new projects an
... Show MoreThe research deals with A very important two subjects, computer aided process planning (CAPP) and Quality of product with its dimintions which identified by the producer organization, the goal of the research is to Highlight and know the role of the CAPP technology to improve quality of the product of (rotor) in the engines factory in the general company for electrical industries, The research depends case study style by the direct visits of researcher to the work location to apply the operational paths generated by specialized computer program designed by researcher, and research divides into four axes, the first regard to the general structure of the research, the second to the theoretical review, the t
... Show MoreConsiderable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical tech
... Show MoreGas lift is one of the most important artificial lift methods for increasing oil production, as wells often require this method after the reservoir's energy has decreased. In this research, an optimal gas lift system is designed for five horizontal wells in the Ahdab oil field, which suffers from low production. At the same time, water cut in some of these wells reaches 66%, while the productivity index is low in others, which makes the challenges clear, and a deep analysis is needed to find an optimal system. The Pipesim program is used to design the optimal gas lift system, which contains features that facilitate the implementation of the appropriate design and provide the ability to analyze and determine the optimal design v
... Show MoreAlbizia lebbeck biomass was used as an adsorbent material in the present study to remove methyl red dye from an aqueous solution. A central composite rotatable design model was used to predict the dye removal efficiency. The optimization was accomplished under a temperature and mixing control system (37?C) with different particle size of 300 and 600 ?m. Highest adsorption efficiencies were obtained at lower dye concentrations and lower weight of adsorbent. The adsorption time, more than 48 h, was found to have a negative effect on the removal efficiency due to secondary metabolites compounds. However, the adsorption time was found to have a positive effect at high dye concentrations and high adsorbent weight. The colour removal effi
... Show More