The goals of endodontic preparation were to shape and clean the space of the root canal and remove microorganisms, affected dentin and pulp, the apical foramen and the canal curve should be protected from being transported during endodontic canal preparation. The aim of this study was to evaluate the curve straightening of curved root canals and apical transportation after preparation with four rotary systems. Forty mesial roots of the lower 1st molars teeth only the mesiobuccal canals were used, these roots were immersed into cold clear acrylic , the teeth roots divided into four groups according to rotary system used for preparation of the canals (ten roots for each group):. group I: ProTaper Next rotary system, group II: IRaCe Plus rotary system, group III: HeroShaper rotary system, group IV: ProTaper rotary system, instrumentation were done to size 30 master apical file and with copious irrigation, total amount of 10 ml of 2.5% of sodium hypochlorite (NaOCl) then rinsed the canals with distilled water 5 ml. radiograph was taken for all roots before and after instrumentation in one direction buccolingual using digital radiograph system. The degree of curve straightening of the root canal and the apical transportation were measured using Image J software and Adobe photoshop CS6 software. Statistical analysis was done and the result showed that group IV had the highest mean values in curve straightening and apical transportation, there were significant difference between group IV and all of the other groups and there were non- significant difference between group I , group II and group . All the four used rotary systems produced adequate geometry during canal preparations. However, some apical transportation in ProTaper group was seen, which might need a caution when used protaper in instrumentation of curved canal.
Due to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.
A new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interac
... Show MoreIn this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data sets
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
In this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
The continuous growth in technology and technological devices has led to the development of machines to help ease various human-related activities. For instance, irrespective of the importance of information on the Steam platform, buyers or players still get little information related to the application. This is not encouraging despite the importance of information in this current globalization era. Therefore, it is necessary to develop an attractive and interactive application that allows users to ask questions and get answers, such as a chatbot, which can be implemented on Discord social media. Artificial Intelligence is a technique that allows machines to think and be able to make their own decisions. This research showed that the dis
... Show MoreA numerical method for the calculation of the three-dimensional wake rollup behind symmetric wings with ground effect and its aerodynamic characteristics for steady low subsonic flow have been developed. A non-planar quadrilateral vortex-ring method with vortex wake relaxation iterative scheme for lifting surfaces is obtained. A computer program was build to treat wings with breaks, span wise trailing edge flaps, local dihedral angle, camber, twist and ground effect. Forces and moments are obtained from vector product of local velocity and vortex strength multiplied by density. The program has been validated for a number of configurations for which experimental data is available. Good agreement has been obtained for these configurations. Al
... Show More