المقدمة قديماً، قبل القرن التاسع عشر، كان التفكير في الضوء على أنه سيل من الجسيمات التي إما تصدر من العين، أو من الجسم الذي ننظر إليه. قاد فكرة أن الضوء عبارة عن جسيمات تنطلق من الأجسام التي نراها العالم إسحاق نيوتن(Isak Newton)، واستخدم هذه الفكرة لتفسير ظاهرتي الانعكاس والانكسار. بقي القبول لدى العلماء لفرض نيوتن سيد الموقف حتى عام 1678م. حيث اقترح الفيزيائي والفلكي الهولندي هوغنز (Huygens) أن الضوء عبارة عن نوع من الأمواج، وتمكنت النظرية الموجية لهوغنز من تفسير ظاهرتي الانعكاس والانكسار للضوء. وفي عام 1801م تمكن العالم ثوماس يونغ (Thomas Young) من إثبات أن الضوء موجة، عن طريق جعل الضوء يتداخل، الأمر الذي سوف يؤدي إلى انخفاض شدة الضوء (أو اختفائه بالكامل)، أو زيادة شدة الضوء (أو تضاعف شدته) هاتين الظاهرتين يعرفان بالتداخل الهدام والتداخل البناء على الترتيب. ثم لحق ذلك نشر ماكسويل Maxwell) ) لعمله في الكهربائية والمغناطيسية في عام 1873 م الذي دعم أيضاً النظرية الموجية للضوء. تمكنت النظرية الموجية للضوء من تفسير معظم الظواهر الضوئية، إلا أنها فشلت في تفسير بعض الظواهر، مثل الظاهرة الكهروضوئية (Photoelectric Effect)، الظاهرة التي نرى من خلالها انطلاق إلكترون من سطح المعدن عند تسليط ضوء عليه، وكان فشل النظرية الموجية للضوء يكمن في أن الطاقة الحركية لكل إلكترون لا تعتمد على شدة الضوء الساقط، وإنما على تردده، بينما يعتمد عدد الإلكترونات المنبعثة من سطح المعدن على شدة الضوء الساقط على هذا المعدن. تمكن العالم ألبرت آينشتاين ( (Albert Einstein) من تفسير هذه الظاهرة عام 1905م مستعيناً بمفهوم تكميم الطاقة الذي وضعه العالم ماكس بلانك، وكنتيجة لتفسيره لهذه الظاهرة حاز على جائزة نوبل في الفيزياء عام 1921م. للإجابة عن ماهية الضوء، يمكن القول إنّ الضوء يُظهر سلوكاً موجياً في بعض الأحيان، وفي أحيان أخرى يُظهر سلوكاً خاصاً بالأجسام. عادةً ما تُستخدَم كلمة ضوء للتعبير عن الإشعاع الكهرومغناطيسي الذي يمثل جزءاً ضيقاً من كامل الطيف الكهرومغناطيسي؛ هذا الجزء من الطيف الكهرومغناطيسي هو الجزء الذي يمكن للعين البشرية أن تدركه، وهو يتراوح بين الطول الموجي (700 nm) للضوء الأحمر والطول الموجي (400 nm) للضوء البنفسجيّ، وكل ما ينطبق على الطيف الكهرومغناطيسي من قوانين ينطبق أيضاً على هذا الجزء، وعلى الأرض تُعدّ الشمس أكبر مصدر للطيف الكهرومغناطيسي كاملاً، وبهذا يمكن استغلال ضوء الشمس في العديد من نشاطات الحياة اليومية. التطور التاريخي لنظريات الضوء النظريات القديمة اعتقد الإغريق القدماء أن الضوء ينبعث من العين ليلمس الأجسام ويمكننا من رؤيتها، لكن العالم العربي الحسن بن الهيثم (965-1039 م) دحض هذه الفكرة في كتابه "المناظر"، حيث أثبت أن الضوء ينبعث من المصدر إلى العين وليس العكس. النظرية الجسيمية (لنيوتن) اقترح إسحاق نيوتن في القرن السابع عشر أن الضوء يتكون من جسيمات دقيقة تنتقل في خطوط مستقيمة. استطاعت هذه النظرية تفسير انعكاس الضوء وانتشاره المستقيم، لكنها فشلت في تفسير ظاهرتي الحيود والتداخل. النظرية الموجية (هوغنز وفرينل) قدم كريستيان هويجنز النظرية الموجية التي تنص على أن الضوء هو موجة تنتقل في وسط مرن يسمى (الأثير)، استطاع أوغستين فرينل تطوير هذه النظرية وشرح ظاهرتي الحيود والتداخل بنجاح. النظرية الكهرومغناطيسية (ماكسويل) في القرن التاسع عشر، توصل جيمس ماكسويل إلى أن الضوء هو موجة كهرومغناطيسية مستعرضة transverse تنتقل بدون وسط، مكونة من مجالين كهربائي ومغناطيسي متعامدين ومتغيرين. تنبأت معادلاته بسرعة الضوء التي تم قياسها تجريبياً وتطابقت مع تنبؤاته. النظرية الكمومية (أينشتاين وبلانك) مع بداية القرن العشرين، قدم ماكس بلانك وألبرت أينشتاين فكرة الفوتون، حيث اعتبرا أن الضوء يتكون من حزم طاقة (كمات) تسمى فوتونات. استطاعت هذه النظرية تفسير الظاهرة الكهروضوئية التي فشلت النظريات الموجية في تفسيرها. طبيعة الضوء (Nature of Light) يبدأ النموذج البسيط لموجة الضوء بشعاع (خط مستقيم) يوضح اتجاه انتقال الضوء. وتمثل الأسهم القصيرة التي على طول الشعاع، والمتعامدة (زاوية قائمة) عليه، المجال الكهربائي. وتشير بعض الأسهم إلى الأعلى من الشعاع والأسهم الأخرى تشير إلى الأسفل منه. وهي تختلف في الطول، لذلك فإن النمط الكلي لرؤوس الأسهم يُشْبه الموجة والأسهم التي تمثل المجال المغناطيسي هي أيضًا تشبه الموجة ولكن هذه الأسهم تصنع زاوية قائمة مع الأسهم التي تمثل المجال الكهربائي (الشكل (1)). وهذا النمط يتحرك خلال الشعاع وهو الضوء. أثبتت التجارب في بداية القرن العشرين أن العلماء في النهاية تركوا فكرة الأثير القديمة. وأدركوا أن موجة الضوء، بوصفها نمطًا منتظمًا من المجالات الكهربائية والمغنطيسية، يمكن أن تنتقل عبر الفضاء. الشكل (1) : موجة يتغير فيها المجال الكهربي E متعامدا على موجة يتغير فيها مجال مغناطيسي B وتنتشر الموجة في الاتجاه Z العمودي على المستوي الذي يتغير فيه المجالان الطيف الكهرومغناطيسي (Electromagnetic Spectrum) يعتبر الضوء المرئي إشعاع كهرومغناطيسي ينتج من أي مصدر تنتقل فيه الالكترونات بين المدارات الذرية المختلفة فينتج فرق طاقة يولد الطاقة الضوئية ، وهو جزء من طيف واسع من الاشعاع الكهرومغناطيسي الذي يبدأ من الموجات الراديوية ( ذات الطول الموجي الطويل والطاقة والتردد الواطئ) ، انتهاءا بالاشعة الكونية ( ذات الطول الموجي القصير والطاقة والتردد العالي) . بينما يتكون الضوء المرئي من طيف جزئي خاص به يبدأ من الضوء الاحمر (ذو الطول الموجي الطويل والطاقة والتردد الواطئ) ، وينتهي بالضوء البنفسجي ( ذو الطول الموجي القصير والطاقة والتردد العالي) كما في الشكل (2). ان العين البشرية قادرة على تحسس الضوء المرئي فقط وتمييز الالوان المختلفة عن طريق مستقبلات خاصة في شبكية العين ( العصيات والمخاريط) لتتحلل الالوان في الدماغ عن طريق العصب البصري. بينما لا يمكن للعين البشرية تحسس باقي الطيف الكهرومغناطيسي بسبب محدودية مدى تحسس الاطوال الموجية لها ، لكن هناك بعض الحيوانات يمكنها ان تتحسس بعض الطيف الكهرومغناطيسي فضلا عن الضوء المرئي. الشكل (2) :الطيف الكهرومغناطيسي سرعة الضوء (Speed of Light) تعتبر سرعة الضوء في الفراغ أسرع شيء في الكون حسب احدث النظريات العلمية (النظرية النسبية لاينشتاين) وهي نفسها لكل الطيف الكهرومغناطيسي، وتختلف سرعة الضوء في الاوساط المختلفة نتيجة اختلاف الخواص البصرية لكل وسط ، وتحسب سرعة الضوء من خلال القانون التالي: c=fλ …… (1) حيث (c) هي سرعة الضوء في الفراغ وهي قيمة ثابتة (3x108 m/sec) ، (f) هو تردد الضوء (عدد ذبذبات الموجة الضوئية في وحدة الزمن ويقاس بالهيرتز (Hertz)) ، (λ) هو الطول الموجي ( المسافة التي تقطعها الموجة الضوئية حتى تعيد نفسها بنفس النمط ويقاس بالمتر او أجزاء المتر) . تعتبر سرعة الضوء من الثوابت الفيزيائية المهمة التي تدخل في كثير من العلاقات المهمة المتعلقة بالبصريات والطاقة وعلاقتها بالكتلة ولعل أهم هذه العلاقات هي معادلة تكافؤ الطاقة والكتلة لاينشتاين (E = mc2). الفوتون (The Photon) اقترح العالم الفيزيائي الألماني ألبرت أينشتاين في سنة 1905 نموذجًا للضوء، وهو مفيد تمامًا مثل النموذج الموجي. يتصرف الضوء في بعض التجارب كما لو أنه جسيمات، وتسمّي هذا النوع من الجسيمات الآن الفوتونات. وفي نموذج أينشتاين فإن شعاع الضوء هو المسار الذي يسلكه الفوتون. فمثلاً عندما يرسل المصباح شعاعًا من الضوء خلال غرفة مظلمة فإن شعاع الضوء يتألف من عدد كبير من الفوتونات، وكل واحد منها يسير في خط مستقيم. فهل الضوء موجات أو جسيمات؟ فيما يبدو، لا يمكن أن يكون النموذجان معًا، لأن النموذجين مختلفان تمامًا. وأفضل إجابة أن الضوء لا هذا ولا ذاك. ويتصرف الضوء في بعض التجارب كما لو أنه موجة، وفي بعضها الآخر كما لو أنه جسيمات. وللضوء في الفراغ سرعة واحدة، بعكس الأنواع الأخرى من الموجات، وهي أقصى سرعة ممكنة لأي شيء. ولا يفهم العلماء كنه هذه الحقيقة. والحقيقة التي تنص على أن الضوء في الفراغ يملك سرعة واحدة وهي واحدة من أسس النظرية النسبية لأينشتاين. ان الفوتون هو جسيم متناهي في الصغر (كتلته السكونية تساوي صفر) له طاقة وزخم وترافقه موجة كهرومغناطيسية (حسب المفاهيم الحديثة) ، ويعتبر كم الطاقة الكهرومغناطيسية أي هو العنصر المكون لكل الطيف الكهرومغناطيسي فضلا على الضوء المرئي ، وتحسب طاقة وزخم الفوتون عن طريق العلاقتين ادناه: E=hf=hc/λ ……(2) p=h/λ ……(3) خصائص الفوتون ( Photon Properties) ممكن تلخيص خصائص الفوتون بالنقاط التالية. يُعدّ الفوتون جسيم وموجة في آن واحد. يتحرّك الفوتون بسرعة الضوء ومقدارها (3x108 m/sec) في الفراغ. ليس للفوتون كتلة، لكن لها طاقة وزخم حركي مُرتبط بالتردد وطول الموجة. يتكوّن أو يتلاشى الفوتون عند امتصاص أو انبعاث الإشعاع. يمتلك الفوتون طاقة لا يمكن تقسيمها، وتُخزّن كمجال كهربائي متذبذب. يستطيع التفاعل مع الجسيمات الأخرى مثل الإلكترونات. يمتلك الفوتون طول موجي وتردد خاص به كالموجات الكهرومغناطيسية. معامل الانكسار (Refractive Index) هي نسبة سرعة الضوء في الفراغ إلى سرعته في هذا الوسط. وهو معامل يبين مدى تأثر المادة بالامواج الكهرومغناطيسية. ليس لمعامل الانكسار وحدة تميزه. كلما ازدادت الكثافة البصرية زاد معامل الانكسار للمادة. معامل الانكسار يعتمد على طول الموجة ويمكن مشاهدة ذلك في المنشور الزجاجي . ان زيادة معامل الانكسار يؤدي إلى نقصان سرعة الضوء c في الوسط. على العموم، فإنّ معامل الانكسار غير ثابت ويعتمد على طول الموجة الكهرومغناطيسيّة. بالإضافة، فلبعض المواد يختلف معامل الانكسار وفق اتجاه تقدّم الموجة الكهرومغناطيسية في المادة. معظم المواد ذات الشفافية للضوء المرئي لديها معاملات انكسار مابين (1-2)، والغازات عند الضغط الجوي القياسي لديها معامل انكسار مقارب للواحد بسبب كثافتها المنخفضة, تقريباً جميع الجوامد والسوائل لديها معامل انكسار أكبر من (1.3) ويستثنى من ذلك الهلام الهوائي. ان الماس من أعلى المواد في قيمة معامل الانكسار(2.42) . أعظم المواد البلاستيكية لديها معاملات انكسار مابين (1.3 – 1.7), ولكن بعض البوليمرات ذات معامل الانكسار الكبير تصل قيمة معامل انكسارها إلى (1.76) للأشعة تحت الحمراء . ان مفهوم معامل الانكسار هو مفهوم نسبي متعلق بالطول الموجي ، فتكون المادة شفافة (اي تسمح بمرور الاشعاع خلالها) لاطوال موجية معينه ، فنحن حين نتحدث عن الزجاج او البلاستك باعتبارها مواد شفافة نقصد للاطوال الموجية لضوء المرئي، بينما الجرمانيوم يعتبر غير شفاف في مدى الضوء المرئي ولدية معامل انكسار حوالي (4) ، في المقابل يكون الجرمانيوم شفاف لمدى الاشعة تحت الحمراء مما يجعله مادة مهمة لصناعة الخلايا الشمسية. يحسب معامل الانكسار من خلال العلاقة التالية : n=c/v …… (4) n=(fλ_o)/fλ=λ_o/λ …… (5) حيث (v) هي سرعة الضوء في الوسط. من الواضح من العلاقة السابقة أن معامل الانكسار لن يمتلك قيمةً أقل من 1، حيث إن القيمة 1 سوف تكون في حالة تحرك الضوء في الفراغ بينما القيم الأكبر من 1 سوف تكون في الأوساط الأخرى، وهذا بسبب أن الضوء يصبح أبطأ في الأوساط، أيضاً تجدر الإشارة إلى أنه لا يوجد وحدة لمعامل الانكسار، وهذا بسبب أنه نسبة سرعة إلى سرعة. جبهة الموجة ومبدأ هوغنز (Wave Front &Huygens Principle) ان مفهوم جبهة الموجة يشير الى المحل الهندسي للنقاط التي لها نفس الطور (اي نفس نسق الحركة للموجة الكهرومغناطيسية). مثال على ذلك موجات الماء المتكونة عند سقوط حجر في بركة الماء الراكدة ، فتكون جبهة الموجة على شكل دوائر متحدة المركز يكون مركزها نقطة سقوط الحجر. لكن في الموجة الضوئية تكون الصورة اعقد من ذلك ، لكن لا بأس بهذا التشبيه اذا كان المصدر نقطي قريب فتنبعث موجات ذات شكل كروي (جبهة الموجة كروية)، اما اذا ابتعدنا عن المصدر فيقل تكور جبهة الموجة الى ان تكون مستوية (تقريبا) في المصادر البعيدة جدا (مثل الشمس). يعتبر مبدأ هوغنز طريقة هندسية لايجاد شكل جبهة الموجة في لحظة زمنية ما اذا كان شكلها معلوم في لحظة اخرى . حيث افترض ان كل نقطة في جبهة الموجة تعتبر مصدر لتوليد موجات ثانوية تنتشر خارج مراكزها وبنفس اتجاه الموجة الاصلية . ان هذا المبدأ يسمح بتفسير عدة ظواهر فيزاوية مهمة مثل الانعكاس والانكسار . مسائل الفصل الاول (Problems) مصدر ضوئي يبعث ضوءًا أحادي اللون بتردد (6x10^14 Hz). إذا كان هذا المصدر يستهلك طاقة قدرها (10W)، احسب: (a)عدد الفوتونات المنبعثة في الثانية، (b) الزخم الكلي للفوتونات المنبعثة في الثانية. 〖 E〗_ph=hf=(6.625x10^(-34) )x(6x10^14 Hz)=3.97x10^(-19) J a) N_ph=(total energy)/(photon energy)=(10 W.1sec)/(3.97x10^(-19) J)≈2.515x10^19 Photons b) p=h/λ=hf/c=〖 E〗_ph/c=(3.97x10^(-19))/(3x10^8 )=1.32x10^(-27) (J.s)⁄m يسقط ضوء أبيض على موشور زجاجي (nR=1.51, nB=1.53). إذا كان الطول الموجي للضوء الأحمر في الفراغ هو( 700nm)، فاحسب: a)) الطول الموجي للضوء الأحمر داخل الموشور. (b) الفرق في عدد الأطوال الموجية للونين الأحمر والأزرق لمسار طوله (10 cm) داخل المنشور. a) λ_R=λ_0/n_R =700nm/1.51=463.6 nm b) N=d/λ=(d.n)/λ_0 〖∆N=N_B-N〗_R=0.1 m(1.53/(400x10^(-9) m)-1.51/(700x10^(-9) m))≈1.64x10^5 يدخل شعاع ضوئي إلى لوح زجاجي (n=1.5) بزاوية o30. إذا كان سمك اللوح (5 cm)، احسب: (a) الزمن الذي يستغرقه الضوء لعبور اللوح. (b) إذا استبدلنا اللوح بآخر من مادة مجهولة، ووجدنا أن الزمن المستغرق لعبور الضوء هو ضعف الزمن السابق، فما معامل انكسار هذه المادة؟ a) v=c/n=(3x10^8)/1.5=2x10^8 m/s r=0.05m/cos30 =0.057m t=r/v=0.057m/(2x10^8 m/s)=0.0285x10^(-8) s 〖b) t〗_2=2t_1=2x0.0285x10^(-8)=0.057x10^(-8) s v=r/t=0.057m/(0.057x10^(-8) s)=1x10^8 m/s n=c/v=(3x10^8)/(1x10^8 )=3 مصدر نقطي (S) يبعث ضوء ذو طول موجي (500 nm) في الهواء . (A , B) نقطتان على شاشة بينهما مسافة (1 cm) ، والمسافة بين الشاشة والمصدر (100 cm) . (a) ما هو الفرق بين عدد الموجات الضوئية بين المسار (SA) والمسار (SB) ؟ (b) وضعت شريحة زجاجية (n=1.5) في المسار (SA) ، ما هو سمك الشريحة اللازم لجعل عدد الموجات في المسارين متساوي ؟ SB=√((SA)^2+(AB)^2 )=√(100^2+1^2 )=100.005 cm m_SB=d/λ=(100.005x10^(-2))/(500x10^(-9) )=0.20001x10^7=20001x10^2 m_SA=(100x10^(-2))/(500x10^(-9) )=20000x10^2 m_SB-m_SA=20001x10^2-20000x10^2=1x10^2=100 m_SB=m_SA d_SB/λ_SB =d_SA/λ_SA → d_SB/λ_SB =(d_SA-d_g)/λ_SA +d_g/(λ_o/n_g ) (100.005x10^(-2))/(500x10^(-9) )=(100x10^(-2)-d_g)/(500x10^(-9) )+(d_g n_g)/(500x10^(-9) ) 100.005=100-d_g+1.5 d_g 0.005=0.5 d_g d_g=0.005/0.5=10^(-2) cm
المقدمة (Introduction) عند سقوط الضوء على الحد الفاصل بين وسطين مختلفين بالكثافة البصرية فان جزء من هذا الضوء ينعكس والجزء الأخر ينكسر والجزء الأخير يمتص ، معتمدا على نوع الوسطين وطبيعة السطح الفاصل بينهما . في هذا الفصل سوف نتحدث على الانعكاس والانكسار لكونه يحدث للجزء الاكبر من الضوء بالنسبة للمواد العازلة الشفافة ، ويهمل الامتصاص لكونه قليل النسبة في هذه المواد ، بينما تزيد نسبة الضوء الممتص في المعادن التي ليست
... Show Moreمقدمة (Introduction) جميع العلاقات السابقة التي تربط بين بعد الجسم وبعد الصورة وانصاف اقطار التكور والبعد البؤري ...الخ مشتقة على اساس ان جميع الاشعة الصادرة من الاجسام هي اشعة شبه محورية (paraxial rays) (تصنع زاوية صغيرة مع المحور) ، لذلك استخدم التقريب الذي يجعل جيب زاوية السقوط يساوي الزاوية نفسها (sinθ≈θ ) . على هذا الاساس افترض ان جميع الاشعة تتقاطع بعد الانعكاس والانكسار في نفس النقطة ، وبذلك نحصل على صورة مثالية نظريا. ا
... Show Moreالعدسة ( The Lens) العدسة جهاز بصري لها سطحي انكسار احدهما او كلاهما كروي الشكل ولسطحيهما نفس المحور الذي يسمى محور العدسة (axis). يكون محور العدسة الخط المستقيم الذي يصل بين مركزي السطحين الكرويين وعمودياً على كلاهما. وطبقا لكيفية انكسار ومرور الضوء في العدسة ونوعية الصور الناتجة عنها، فهي توصف بأنها عدسة محدبة (لامة) أو مقعرة (مفرقة) . ان الوظيفة الاساسية للعدسة هي تكوين الصور(image formation) من خلال تغيير مسار الاشعة النا
... Show Moreالمرايا (Mirrors) المِرْآة هي أداة لها القابلية على عكس الضوء بطريقة تحافظ على الكثير من صفاتهما الأصلية. تخضع الصورة المتكونة في المرايا الى قوانين الانعكاس . تمتاز الصور المتكونة في المرايا بخلوها من التأثيرات اللونية (الزيغ اللوني) الذي سوف نتطرق له في الفصل اللاحق . تستخدم المرايا في كثير من الاجهزة البصرية والأدوات المنزلية والصناعية والطبية لما لها من مميزات في تكوين صور بأشكال وأحجام مختلفة . ان الوظيفة ا
... Show Moreمقدمة (Introduction) درسنا فيما سبق ظواهر الانكسار والانعكاس التي تندرج ضمن البصريات الهندسية ، اي يعتبر فيها مسار الضوء بشكل أشعة مستقيمة . لكن حقيقة الامر ان الضوء يسير في الوسط بشكل موجي ، اي يخضع لصفات الموجة الكهرومغناطيسية من سرعة وطول موجي وتردد وطاقة وزخم . ان من اهم الظواهر البصرية التي تندرج ضمن الطبيعة الموجية للضوء هي ظاهرة التداخل (interference) . لذلك يجب في البداية التعرف على صفات الموجة الكهرومغناطيسية للتم
... Show Moreمقدمة (Introduction) الحيود هو احد الظواهر المتعلقة بالطبيعة الموجية للضوء ، تحدث عند اصطدام موجة ضوئية )أو صوتية( بعائق وتوصف بانها انحناء شديد الوضوح للموجات حول عوائق صغيرة وانتشار الموجات من خلال فتحات صغيرة . وتحدث ظاهرة الحيود أيضا مع الجسيمات الأولية مثل الإلكترون والنيوترون حيث أن الجسيمات الأولية لديها خصائص موجية، فحيود الضوء يحدث أيضا مع المادة ويمكن أن يُدرس طبقاً لميكانيكا الكم . فالحيود هو انحراف ال
... Show Moreالسطح الكروي (Spherical Surface) السطح الكروي هو سطح منحني جزء من كرة . يسمى السطح الكروي محدب (convex surface) اذا كان مركز التكور له على اليمين ، ويسمى السطح الكروي مقعر(concave surface) اذا كان مركز التكور له على اليسار كما في الشكل (1) . السطح الكروي الذي يفصل وسطين شفافين له خاصية تجميع او تفريق الاشعة الضوئية المنكسره عليه نتيجة قوانين الانكسار ، وتطبيق قانون سنيل على السطح الكروي باستخدام العمود المقام على مماس النقطة التي يحدث
... Show MoreIslam had come to urge for justice, to call for the freedom of the human and to
assert his dignity. Islamic education focused on the perfect growth of the
individual, presence of the human and his future as well. The Islam also attended in
education of the child raising him with respect all aspects of life. All of these things
had made the Islamic education as an extensive and balanced. There is no wonder
to consider Islam as the main source of legislation to attain its definitive aim which
is to establish a rational sober human worships God and educates the earth where
he settle down and make use of all its blessings due to God's legislation. (Shari 'a)
If Islam takes care of raising upbringing a child since his
The research demonstrates new species of the games by applying separation axioms via sets, where the relationships between the various species that were specified and the strategy of winning and losing to any one of the players, and their relationship with the concepts of separation axioms via sets have been studied.