Preferred Language
Articles
/
8hfF8pMBVTCNdQwCk-ux
Efficient Removal of Brilliant Green Dye Using Mesoporous Attapulgite Clay: Investigating Adsorption Kinetics, Isotherms, and Mechanisms
...Show More Authors

The study involved the effectiveness of Iraqi attapulgite (IQATP) clay as an environmentally friendly material that easily adsorbs brilliant green (BG) dye from water systems and is identified by various complementary methods (e.g., FTIR, SEM‐EDS, XRD, ICP‐OES, pHpzc, and BET), where the result reported that the IQATP specific surface area is 29.15 m2/g. A systematic analysis was selected to evaluate the impact of different effective adsorption performance variables on BG dye decontamination. These variables included IQATP dosage (0.02–0.8 g/L), solution pH (3.05–8.15), contact time (ranging from 2 to 25 min), and initial BG dye concentration from 20 to 80 mg/L. The parameters of kinetic profiles were best represented by the (P‐2‐O) model with the determination of coefficient (R2, 0.99), and the corresponding equilibrium data of dye provided a good fit of the Freundlich adsorption model with a maximal multilayer IQATP adsorption capacity (Qmax, = 1.41 mg/g) under optimum conditions (temperature 318 K, pH 3.05, optimum equilibrium time 25 min, and IQATP dosage 0.2 g/L) for BG dye removal. Thermodynamic parameters, including ΔG = −5.67, −6.10, and −7.56 kJ/mol, ΔH = 29.89 kJ/mol, ΔS = 118.73 J/mol·K, and activation energy Ea = 14.38 kJ/mol, were calculated to understand the adsorption process. This trend indicates an endothermic, spontaneous, and favorable adsorption profile for basic dye by IQATP. The adsorption mechanism was elucidated, indicating the involvement of electrostatic attractions, hydrogen bonding, and n − π interactions in the adsorption of cationic dye. Desorption experiments of BG by IQATP with five repetition cycles showed a great desorption percentage when using 0.1 M hydrochloric acid (HCl), as the eluting agent. Overall, the findings highlight IQATP as a promising and desirable natural adsorbent for the efficient removal of cationic dyes.

Scopus Crossref
View Publication
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Removal of malachite green by poly acrylic beads
...Show More Authors

This work investigates removing the Malachite Green (MG) dye, the poly acrylic hydrogel beads used as a surface to adsorb the dye, the isotherm of adsorption was examined and aspects that influence it, like increasing heat, adding salt, the influence of dry beads and effect of shaking. according to the results, the effect of the adsorption has been found that it is matched to the Friendlish equation much more than Langmuir and Temkin equations. A positive relationship between the adsorption process and the increase in temperature is found that adsorption increases when the temperature increase. Also, the adsorption increased when the salt was added at a temperature (of 20 C0). As that the adsorption doesn’t budge by adding either

... Show More
View Publication
Crossref (11)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Boron Removal by Adsorption onto Different Oxides
...Show More Authors

A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Study the Performance of Low Cost Material (Peanut Hulls) for Dye Adsorption Using Inverse Fluidized Bed
...Show More Authors

The present study dealt with the removal of methylene blue from wastewater by using peanut hulls (PNH) as adsorbent. Two modes of operation were used in the present work, batch mode and inverse fluidized bed mode. In batch experiment, the effect of peanut hulls doses 2, 4, 8, 12 and 16 g, with constant initial pH =5.6, concentration 20 mg/L and particle size 2-3.35 mm were studied. The results showed that the percent removal of methylene blue increased with the increase of peanut hulls dose. Batch kinetics experiments showed that equilibrium time was about 3 hours, isotherm models (Langmuir and Freundlich) were used to correlate these results. The results showed that the (Freundlich) model gave the best fitting for adsorption capacity. D

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 28 2022
Journal Name
Sains Malaysiana
Green Synthesis of Nickle Oxide Nanoparticles for Adsorption of Dyes
...Show More Authors

The green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha

... Show More
View Publication
Scopus (28)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Kinetics and Energetic Parameters Study of Phenol Removal from Aqueous Solution by Electro-Fenton Advanced Oxidation Using Modified Electrodes with PbO2 and Graphene
...Show More Authors

The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Removal of Methyl Orange from Aqueous Solutions by Adsorption Using Corn Leaves as Adsorbent Material
...Show More Authors

A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav

... Show More
View Publication Preview PDF
Crossref (21)
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Removal of Methyl Orange from Aqueous Solutions by Adsorption Using Corn Leaves as Adsorbent Material
...Show More Authors

A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equi

... Show More
View Publication
Crossref (22)
Crossref
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Local wheat peel as a solid surface to remove Azure B dye from aqueous solution:Equilibrium isotherms and thermodynamic study
...Show More Authors

In this research local wheat peel was used as an adsorbent surface for removal of Azure B (AB) dye from the aqueous solution. The adsorption process was performed at different experimental parameters, equilibrium time, temperature, ionic strength and solution pH. The isotherms of adsorption are of H-type as compared with Giles curves and the adsorption data were coincide with Freundlich equation. The adsorption kinetic data were analyzed using pseudo- first and second order kinetic models. The effect of temperature was studied and the amount of dye adsorbed was found to increase with the increasing of temperature from 25 to 50 oC. The values of thermodynamic functions like enthalpy and entropy have been estimated. The quantity of adso

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Removal Color Study of Toluidine Blue dye from Aqueous Solution by using Photo-Fenton Oxidation
...Show More Authors

The degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 28 2022
Journal Name
Egyptian Journal Of Chemistry
Study the kinetics of electrochemical removal of cobalt from aqueous solutions using a Flow-by Fixed Bed Bio-electrochemical Reactor
...Show More Authors

View Publication
Scopus Clarivate Crossref