Background: Pseudomonas aeruginosa is a devious pathogen with the tendency to prompt many acute and serious chronic diseases. This study aims to detect novel genes (Toxins-Antitoxins II system), especially; higB and higA encoded from P. aeruginosa by PCR technique and the relation between these genes and antibiotic resistance of P. aeruginosa. Methods: This study detected 50 isolates of P. aeruginosa from distinct clinical sources. The most common origin of isolates was (44%) burn swabs, (22%) urine culture, (12%) wound swabs, (14%) sputum, and (8%) ear swabs. The bacteria were isolated using implantation MacConkey agar and blood agar, as well as biochemical tests including oxidase test, catalase test then VITEK-2 System of P. aeruginosa isolates was improved a final identification. While the determination of sensitivity to antibiotics by using the ASST-VITEK2 compact system method. Genotypic detection was carried out using conventional polymerase chain reaction for higB and higA.Also sequencing of products for higB-higA genes were detected.Results: The results revealed that 82% of isolates have novel genes higB in 823pb while only 30% have higA in 712pb have this gene. This study discovered correlations among toxins-antitoxins II (higB-higA ) genes and resistance to antibiotics in P. aeruginosa with significant when (p
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More