Future generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for designing the DL training sequences to maximize the achievable sum rate of FDD systems with limited channel coherence time (CCT) is proposed using a waterfilling power allocation method. This achievable sum rate maximization is achieved using sequences produced from a summation of the user’s covariance matrices and then applying a waterfilling power allocation method to the obtained low-complexity training sequence. The results show that the proposed TS outperforms the existing methods in the medium and high SNR regimes while reducing computational complexity. The obtained results signify the proposed TS’s feasibility for practical consideration compared with the existing DL training sequence designs.
The construction sector consumes large amounts of energy during the lifetime of a building. This consumption starts with manufacturing and transferring building materials to the sites and demolishing this building after a long time of occupying it. The topic of energy conservation and finding the solution inside the building spaces become an important and urgent necessity. It is known that the roof is exposed to a high amount of thermal loads compared to other elements in a building envelope, so this needs some solutions and treatments to control the flow of the heat through them. These solutions and treatments may be achieved by using nanomaterials. Recently, nanomaterials have high properties, so that this made them go
... Show MoreThe melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreThis study aimed to compare the safety and efficacy of laser lithotripsy and pneumatic lithotripsy, the two most commonly used transurethral lithotripsy methods for treating bladder stones in children in Iraq. Between January 2013 and December 2016, 64 children with bladder stones were included in this prospective randomized study, after ethical committee approval and written consent from the children’s parents or caregivers were obtained. Patients were assigned randomly by computer software to two groups treated with either pneumatic cystolithotripsy or laser lithotripsy. A 9 Fr. semirigid ureteroscope was used to pass the lithotripter through and fragment the stone. A catheter of 8–12 Fr. was then introduced and kept in place
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreAfter baking the flour, azodicarbonamide, an approved food additive, can be converted into carcinogenic semicarbazide hydrochloride (SEM) and biurea in flour products. Thus, determine SEM in commercial bread products is become mandatory and need to be performed. Therefore, two accurate, precision, simple and economics colorimetric methods have been developed for the visual detection and quantitative determination of SEM in commercial flour products. The 1st method is based on the formation of a blue-coloured product with λmax at 690 nm as a result of a reaction between the SEM and potassium ferrocyanide in an acidic medium (pH 6.0). In the 2nd method, a brownish-green colored product is formed due to the reaction between the SEM and phosph
... Show MoreMaterial obtained from the demolition of concrete structures and milling of flexible pavements has the highest potential for recyclability. This study aimed to evaluate the performance of hot mix asphalt with the concurrent use of recycled asphalt pavement (RAP) and recycled concrete aggregate (RCA). Contents of RAP and RCA were varied from 0% to 50% by fixing the total recycling materials percentage to 50%. Penetration grade 40/50 virgin binder and waste engine oil (WEO) as rejuvenator were used in the present study. A series of tests, such as Scanning electron microscopy (SEM), Marshall stability, indirect tensile strength test, IDEAL CT, uniaxial compression test, and resilient modulus test, were carried out to assess the performance of
... Show MoreABSTRACT
This study was conducted to determine the effect of various levels of hump fat (HF) used in manufacturing of camel, beef and chicken sausage to understand the effect of (HF) on physicochemical composition sausage, Different levels of hump fat (5, 7, and 10 %) were used, physicochemical compositions like (moisture, protein, fat, Ash, water holding capacity, shrinkage, cooking loss and pH) were determined. Results of the study revealed that moisture content showed high significant differences (P≤0.01)among treatments groups, Camel sausage and beef sausage tended to have highest values while chicken sausage reported the lowest value. The study showed no significant difference (P≤0.05) among the
... Show More