The economical design of plate loaded by pressure can be obtained by using stiffeners instead of increasing the thickness of plate. The main subject of this work is to obtain the effect of stiffener height on the maximum stress in the plate subjected to pressure load. Different plate-stiffener sets are selected to find the effects of stiffener thickness, plate dimensions and pressure, on the optimum stiffener height. The models under consideration are square plates clamped rigidly from four edges. Finite Element method is used to analyze 160 different models by using the Finite Element software package ANSYS version 11. Another analysis method based on maximum stress equation is used to analyze 30 models. The graphical comparison of results between two analytical methods is presented by a figure. It is found that the numerical results obtained by Finite Element Analysis converge to theoretical results. The optimum height of stiffener under above different effects is found. The critical pressure curves for square plate dimension sets are also presented.
In this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreThis research shows the experimental results of the bending moment in a flexible and rigid raft foundation rested on dense sandy soil with different embedded depth throughout 24 tests. A physical model of dimensions (200mm*200mm) and (320) mm in height was constructed with raft foundation of (10) mm thickness for flexible raft and (23) mm for rigid raft made of reinforced concrete. To imitate the seismic excitation shaking table skill was applied, the shaker was adjusted to three frequencies equal to (1Hz,2Hz, and 3Hz) and displacement magnitude of (13) mm, the foundation was located at four different embedment depths (0,0.25B = 50mm,0.5B = 100mm, and B = 200mm), where B is the raft width. Generally, the maximum bending
... Show MoreThis research is concerned with a new type of ferrocement characterized by its lower density and enhanced thermal insulation. Lightweight ferrocement plates have many advantages, low weight, low cost, thermal insulation, environmental conservation. This work contain two group experimental : first different of layer ferrocement, second different of ratio aggregate to cement. The experiments were made to determined the optimum proportion of cement and lightweight aggregate (recycle thermestone ). A low W/C ratio of 0.4 was used with super plasticizer conforming to ASTM 494 Type G. The compressive strength of the mortar mixes is 20-25 MPa. The work also involved the determination of thermal properties .Thermal conductivity value of thi
... Show MoreVibration analysis plays a vital role in understanding and analyzing the behavior of the structure. Where, it can be utilized from this analysis in the design process of the structures in different engineering applications, check the quality and safety of the structure under different working conditions. This work presents experimental measurements and numerical solutions to an out of plane vibration of a rectangular plate with a circular hole. Free edges rectangular plates with different circular holes diameters were studied. The effects of hole location on the plate natural frequencies were also investigated. A finite element modeling (using ANSYS Software) has been used to analyze the vibration characteristics of the plates. A good agree
... Show MoreBall and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes
... Show MoreReservoir study has been developed in order to get a full interesting of the Nahr Umr formation in Ratawi oil field. Oil in place has been calculated for Nahr Umr which was 2981.37 MM BBL. Several runs have been performed to get matching between measured and calculated of oil production data and well test pressure. In order to get the optimum performance of Nahr Umr many strategies have been proposed in this study where vertical and horizontal wells were involved in addition to different production rates. The reservoir was first assumed to be developed with vertical wells only using production rate of (80000–125000) STB/day. The reservoir is also proposed to produce using horizontal wells besides vertical wells with production rat
... Show MoreThe present study deals with the optimum design of self supporting steel communication towers. A special technique is used to represent the tower as an equivalent hollow tapered beam with variable cross section. Then this method is employed to find the best layout of the tower among prespecified configurations. The formulation of the problem is applied to four types of tower layout
with K and X brace, with equal and unequal panels. The objective function is the total weight of the tower. The variables are the base and the top dimensions, the number of panels for the tower and member's cross section areas. The formulations of design constraints are based on the requirements of EIA and ANSI codes for allowable stresses in the members
A cut-off low is a closed low with a low value of geopotential height at the upper atmospheric levels that has been fully detached (cut-off) from the westerly flow and move independently. A cut-off low causes extreme rainfall events in the mid-latitudes regions. The main aim of this paper is to investigate the cut-off low at 500 hPa over Iraq from a synoptic point of view and the behavior of geopotential height at 500 hPa. To examine the association of the cut-off low at 500 hPa with rainfall events across Iraq, two case studies of heavy rainfall events from different times were conducted. The results showed that the cut-off low at 500 hPa with a low value of geopotential height will strengthen the low-pressure system at the surface, lea
... Show More