Preferred Language
Articles
/
8ha9iIkBVTCNdQwCL4ps
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Estimation and Improvement of Routing Protocol Mobile Ad-Hoc Network Using Fuzzy Neural Network
...Show More Authors

Ad-Hoc Networks are a generation of networks that are truly wireless, and can be easily constructed without any operator. There are protocols for management of these networks, in which the effectiveness and the important elements in these networks are the Quality of Service (QoS). In this work the evaluation of QoS performance of MANETs is done by comparing the results of using AODV, DSR, OLSR and TORA routing protocols using the Op-Net Modeler, then conduct an extensive set of performance experiments for these protocols with a wide variety of settings. The results show that the best protocol depends on QoS using two types of applications (+ve and –ve QoS in the FIS evaluation). QoS of the protocol varies from one prot

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Scopus (15)
Crossref (8)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Preview PDF
Publication Date
Thu Aug 31 2023
Journal Name
Iraqi Geological Journal
The Effect of Nickel, Vanadium, Asphaltene, NSO and Sulfur on Crude Oil Quality
...Show More Authors

The Mishrif reservoir (Cenomanian - Turonian) in the Z, H, B and N oilfields in southern Iraq was investigated to clarify how nickel, vanadium, asphaltene, NSO and sulfur content affect the crude oil quality. The GC-Mass and ICP-MS analyses were used to provide fruitful hydrocarbon results. Classification of crude oil based on API gravity broadly indicates the oil's density and general properties. Typically, lighter crude oils are easier to refine, yield higher percentages of valuable products such as gasoline and diesel, and have a higher market value. Heavier crude oils require more processing and may yield more residual products, such as heavy fuel oil and asphalt. The Mishrif crude oil was classified as a medium sour crude oil c

... Show More
View Publication
Scopus (9)
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 24 2021
Journal Name
Ieee Access
Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System
...Show More Authors

An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to

... Show More
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Comparison Study of Electromyography Using Wavelet and Neural Network
...Show More Authors

In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.

View Publication Preview PDF
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)
Detection System of Varicose Disease using Probabilistic Neural Network
...Show More Authors

Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Key Exchange Management by using Neural Network Synchronization
...Show More Authors

The paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev

... Show More
View Publication Preview PDF