Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship and meanings of words in the document. As a result the sparsity and semantic problem that is prevalent in textual document are not resolved. In this study, the problem of sparsity and semantic is reduced by proposing a graph based text representation method, namely dependency graph with the aim of improving the accuracy of document clustering. The dependency graph representation scheme is created through an accumulation of syntactic and semantic analysis. A sample of 20 news groups, dataset was used in this study. The text documents undergo pre-processing and syntactic parsing in order to identify the sentence structure. Then the semantic of words are modeled using dependency graph. The produced dependency graph is then used in the process of cluster analysis. K-means clustering technique was used in this study. The dependency graph based clustering result were compared with the popular text representation method, i.e. TFIDF and Ontology based text representation. The result shows that the dependency graph outperforms both TFIDF and Ontology based text representation. The findings proved that the proposed text representation method leads to more accurate document clustering results.
A simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators
This paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreThe tactical side in application of offensive plans in basketball did not take a large in scientific research because it always change because it related in mental ability of players and for the condition of the game and researchers notice that from their followed a lot of games for Duhok basketball club in Iraq league. There is a problem that connected in games results it clears in weakness in application of offensive plans in all kind (man to man & zone defense & side ball plans & under basketball and half court). The goal of study concentrate by designing a sheet for som offensive plans for study and analysis to Duhok club on Asian Championship 2011 at the base the sample contained (Iraq Duhok & application science Jordan & Lebanon sport
... Show MoreAbstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show MoreCryptosporidiosis is mainly cause a persistent diarrhea in immune compromised patients, BALB/c mice have been suppressed by dexamethasone, tissue Th1, Th2 and Th17 cytokines concentrations in the ileum were significantly diminished in both infected and immunosuppressed mice. Level of IFN-g, TNF-a, IL-12, IL-6, IL-17A was increased in level, IL-4 didn’t increases, in both ileal and spleen tissue. Levels of above cytokines were examined in spleen in order to follow the proliferation of CD4+ T-cell during C. parvum infection.
An impressed current cathodic protection system (ICCP) requires measurements of extremely low-level quantities of its electrical characteristics. The current experimental work utilized the Adafruit INA219 sensor module for acquiring the values for voltage, current, and power of a default load, which consumes quite low power and simulates an ICCP system. The main problem is the adaptation of the INA219 sensor to the LabVIEW environment due to the absence of the library of this sensor. This work is devoted to the adaptation of the Adafruit INA219 sensor module in the LabVIEW environment through creating, developing, and successfully testing a Sub VI to be ready for employment in an ICCP system. The sensor output was monitored with an Ardui
... Show MoreFlow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel
... Show MoreSurvival analysis is widely applied to data that described by the length of time until the occurrence of an event under interest such as death or other important events. The purpose of this paper is to use the dynamic methodology which provides a flexible method, especially in the analysis of discrete survival time, to estimate the effect of covariate variables through time in the survival analysis on dialysis patients with kidney failure until death occurs. Where the estimations process is completely based on the Bayes approach by using two estimation methods: the maximum A Posterior (MAP) involved with Iteratively Weighted Kalman Filter Smoothing (IWKFS) and in combination with the Expectation Maximization (EM) algorithm. While the other
... Show MoreThe measurement data of the raw water quality of Tigris River were statistically analyzed to measure the salinity value in relation to the selected raw water quality parameters. The analyzed data were collected from five water treatment plants (WTPs) assembled alongside of the Tigris River in Baghdad: Al-Karkh, Al-Karama, Al-Qadisiya, Al-Dora, and Al-Wihda for the period from 2015 to 2021. The selected parameters are total dissolved solid (TDS), electrical conductivity (EC), pH and temperature. The main objective of this research is to predicate a mathematical model using SPSS software to calculate the value of salinity along the river, in addition, the effect of electrical conductivi