Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship and meanings of words in the document. As a result the sparsity and semantic problem that is prevalent in textual document are not resolved. In this study, the problem of sparsity and semantic is reduced by proposing a graph based text representation method, namely dependency graph with the aim of improving the accuracy of document clustering. The dependency graph representation scheme is created through an accumulation of syntactic and semantic analysis. A sample of 20 news groups, dataset was used in this study. The text documents undergo pre-processing and syntactic parsing in order to identify the sentence structure. Then the semantic of words are modeled using dependency graph. The produced dependency graph is then used in the process of cluster analysis. K-means clustering technique was used in this study. The dependency graph based clustering result were compared with the popular text representation method, i.e. TFIDF and Ontology based text representation. The result shows that the dependency graph outperforms both TFIDF and Ontology based text representation. The findings proved that the proposed text representation method leads to more accurate document clustering results.
Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreLiterary translation is one of the most difficult types of translation ,because it conveys feelings that differ from one person to another, and since the language constitutes an obstacle to understanding the Andalusian excerpts, the translators resorted to translating it, and this was a second start to the text, different from its first start, is said from the tongue of the Al-washah , The muwashshah is a poetic art that appeared in Andalusia after the Arabs entered it ,characterized by special system It differs from the traditional Arabic poem, as it has a beginning represented in the beginning of the muwashshah and several equal parts ending with differentrhymes.
... Show MoreWith a great diversity in the curriculum contemporary monetary and visions, and development that hit the graphic design field, it has become imperative for the workers in the contemporary design research and investigation in accordance with the intellectual treatises and methods of modern criticism, because the work design requires the designer and recipient both know the mechanics of tibographic text analysis in a heavy world of texts and images varied vocabulary and graphics, and designer on before anyone else manages the process of analysis to know what you offer others of shipments visual often of oriented intended from behind, what is meant, in the midst of this world, the curriculum Alsemiae directly overlap with such diverse offer
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreIn recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime
... Show MoreIn this paper we generalize Jacobsons results by proving that any integer in is a square-free integer), belong to . All units of are generated by the fundamental unit having the forms
our generalization build on using the conditions
This leads us to classify the real quadratic fields into the sets Jacobsons results shows that and Sliwa confirm that and are the only real quadratic fields in .
This paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.
Assume that G ≅ HN the Harada–Norton group. In this paper, effective investment for the graph ΓRI HN standard features to acquire meaningful algebraic results for the graph ΓRI HN and its corresponding group HN. For instance, marketing a modern methods to understand the way of create a precise small subgroups in G. Furthermore, performing a full investigation for getting particular ΓRI HN parameters.