Preferred Language
Articles
/
8hYDe4cBVTCNdQwClFPP
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF), k-Nearest Neighbor (k-NN), Sequential Minimal Optimization (SMO), Naïve Bayes (NB), and Decision Tree (DT). The performance of the system validated over Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of the experiments showed given good accuracy compared with the previous studies using a fusion of a few numbers of features with the RF classifier.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 01 2016
Journal Name
Paripex - Indian Journal Of Research
Using falling (deep) Jump training units to improve the explosive and characterized by speed forces for the badminton players College of physical education, and sport science for girls College of physical education, and sport science for girls College of physical education, and sport science for girls KEYWORDS
...Show More Authors

The research abstract included introduction and the importance of the research, also included display of the problem represented by weakness for the players when performing some of the basic skills in badminton and the shuttle not reaching to the back corners of the court which gives the player the opportunity to win through applying the pressure on the opponent and make him away from the control center(T) which definitely required level of a collection muscular strength contributed in performance perhaps this related to a number of reasons related with weakness in physical changes especially explosive and characterized by speed forces for the badminton players and be acquainted with them and knowing the extent of their effect in performanc

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Photonics & Lasers In Medicine
The assessment of pathological changes in cerebral blood flow in hypertensive rats with stress-induced intracranial hemorrhage using Doppler OCT: Particularities of arterial and venous alterations/Die Beurteilung von pathologischen Veränderungen der Hirndurchblutung bei hypertensiven Ratten mit Stress-induzierten intrakraniellen Blutungen mittels Doppler-OCT: Besonderheiten von arteriellen und venösen Veränderungen
...Show More Authors
Abstract<p>Hemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst</p> ... Show More
View Publication
Scopus (13)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Results In Physics
Alpha clustering preformation probability in even-even and odd-A<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e3355" altimg="si39.svg"><mml:msup><mml:mrow /><mml:mrow><mml:mn>270</mml:mn><mml:mo>−</mml:mo><mml:mn>317</mml:mn></mml:mrow></mml:msup></mml:math>(116 and 117) using cluster formation model and the mass formulae : KTUY05 and WS4
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2018
Journal Name
2018 2nd International Conference On Imaging, Signal Processing And Communication (icispc)
Analogy-based Common-Sense Knowledge for Opinion-Target Identification and Aggregation
...Show More Authors

The development of Web 2.0 has improved people's ability to share their opinions. These opinions serve as an important piece of knowledge for other reviewers. To figure out what the opinions is all about, an automatic system of analysis is needed. Aspect-based sentiment analysis is the most important research topic conducted to extract reviewers-opinions about certain attribute, for instance opinion-target (aspect). In aspect-based tasks, the identification of the implicit aspect such as aspects implicitly implied in a review, is the most challenging task to accomplish. However, this paper strives to identify the implicit aspects based on hierarchical algorithm incorporated with common-sense knowledge by means of dimensionality reduction.

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying the Classification of Texture Images by K-Means of Co-Occurrence Matrix and Confusion Matrix
...Show More Authors

In this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between every

... Show More
Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying the Classification of Texture Images by K-Means of Co-Occurrence Matrix and Confusion Matrix
...Show More Authors

In this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between ev

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Iec2017 Proceedings Book
Improving TF-IDF with Singular Value Decomposition (SVD) for Feature Extraction on Twitter
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Fri Nov 01 2019
Journal Name
2019 1st International Informatics And Software Engineering Conference (ubmyk)
Radial Basis Function (RBF) Based on Multistage Autoencoders for Intrusion Detection system (IDS)
...Show More Authors

In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref