In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance estimation performances. Based on the accurate estimations of the adaptive extended state observer, the proposed adaptive full state error feedback controller is equipped with variable gains driven by the tracking error to develop control precision. The integration of the advantages of the adaptive extended state observer and the adaptive full state error feedback controller can improve the dynamic transient and static steady-state effectiveness, respectively. To assess the superior performance of the proposed adaptive active disturbance rejection control, a comparative analysis is conducted between the proposed control scheme and the classical active disturbance rejection control in two different cases. It is worth noting that the active disturbance rejection control serves as a benchmark for evaluating the performance of the proposed control approach. The results from the comparison studies executing two simulated cases validate the superiority of the suggested control, in which estimation, tracking response rate, and steering angle precision are greatly improved by the scheme proposed in this article.
In the present work, the pollutants of the municipal wastewater are reduced using Chlorella vulgaris microalgae. The pollutants that were treated are: Total organic carbon (TOC), Chemical oxygen demand (COD), Nitrate (NO3), and Phosphate (PO4). Firstly, the treatment was achieved at atmospheric conditions (Temperature = 25oC), pH 7 with time (1 – 48 h). To study the effect of other microorganisms on the reduction of pollutants, sterilized wastewater and unsterilized wastewater were used for two types of packing (cylindrical plastic and cubic polystyrene) as well as algae's broth (without packing), where the microalgae are grown on the packing then transported to the wastewater for treatment. Th
... Show MoreAn experimental study was conducted to determine the performance of a solar electric refrigeration system. The system contained flat photovoltaic solar panel which absorbs the solar energy and convert it to electrical energy, used to run the refrigeration cycle. Two refrigeration cycles with electrical solar panel were used over a period of 12 months, the first one with classical parts known in refrigeration cycle, while the second one introduced heat exchanger which improves the coefficient of performance by saving the consumed energy. The coefficient of performance of these refrigeration cycles with compressor efficiency 85% are 2.102 and 2.57 respectively. The overall efficiency of the two systems are 18.9% and 23.13%.
Background: Nasopharyngeal carcinoma (NPC) is one of the most challenging tumors because of their relative inaccessibility and that their spread can occur without significant symptoms with few signs, but Radiotherapy (RT) has a role in treatment of it.
Objectives: To show that RT is still the modality of choice in the treatment of NPC, to study modes of presentations, commonest histopathological types and their percentages, to show differences in the sensitivities of these types to RT and to find out a 5 year survival rate(5YSR) and its relation with lymph node involvement.
Methods: This is a retrospective study of 44 patients with NPC who were treated with routine RT from 1988-2007 at the institute of radiology and nuclear medicin
In this research, a modified artificial hand with direct control has been designed using electrical artificial muscle wires that receive direct sensory impulses through human hand instead of using the mechanical action to open and close this artificial hand. Each finger is designed as a chain and its movements achieved through the conventional arrangement control of the electrical muscles wires. The results indicate that it is possible to design an artificial hand using electrical muscle wire for control it with high accuracy.
In this work Polyynes was synthesized by pulse laser ablation of graphite target in ethanol solution. UV-Visible Spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR) and Transmission electron microscopy (TEM) were used to study the optical absorption, chemical bonding, particle size and the morphology. UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen – capped polyyne (Cn+1H2), the absorption peaks intensity increased when the polyynes were produced at different laser energies and the formation rats of polyynes increased with the increasing of laser pulse number. The FTIR absorption peak at 2368.4 cm-1, 1640.0 cm-1 and 1276.
... Show MoreA progression of Polyaniline (PANI) and Titanium dioxide (TiO2) nanoparticles (NPs) were prepared by an in-situ polymerization strategy within the sight of TiO2 NPs. The subsequent nanocomposites were analyzed using Fourier-transform infrared spectra (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX) taken for the prepared samples. PANI/TiO2 nanocomposites were prepared by various compound materials (with H2SO4 0.3 M and without it, to compare the outcome of it) by the compound oxidation technique using ammonium persulfate (APS) as oxidant within the sight of ultrafine grade powder of TiO2 cooled in an ice bath.
... Show More