In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance estimation performances. Based on the accurate estimations of the adaptive extended state observer, the proposed adaptive full state error feedback controller is equipped with variable gains driven by the tracking error to develop control precision. The integration of the advantages of the adaptive extended state observer and the adaptive full state error feedback controller can improve the dynamic transient and static steady-state effectiveness, respectively. To assess the superior performance of the proposed adaptive active disturbance rejection control, a comparative analysis is conducted between the proposed control scheme and the classical active disturbance rejection control in two different cases. It is worth noting that the active disturbance rejection control serves as a benchmark for evaluating the performance of the proposed control approach. The results from the comparison studies executing two simulated cases validate the superiority of the suggested control, in which estimation, tracking response rate, and steering angle precision are greatly improved by the scheme proposed in this article.
Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.
The fine aggregate
... Show MoreThis research concerns study the crack growth in the wall of pipes made of low carbon steel under the impact load and using the effect of hygrothermal (rate of moisture 50% and 50℃ temperature). The environmental conditions were controlled using high accuracy digital control with sensors. The pipe have a crack already. The test was performed and on two type of specimens, one have length of 100cm and other have length 50cm. The results were, when the humidity was applied to the pipe, the crack would enhance to growth (i.e. the number of cycles needed to growth the crack will reduce). In addition, when the temperature was increase the number of cycles needed to growth the crack are reduced because the effect of heat on the mechanical pro
... Show MoreSolvents are important components in the pharmaceutical and chemical industries, and they are increasingly being used in catalytic reactions. Solvents have a significant influence on the kinetics and thermodynamics of reactions, and they can significantly change product selectivity. Solvents can influence product selectivity, conversion rates, and reaction rates. However, solvents have received a lot of attention in the field of green chemistry. This is due to the large amount of solvent that is frequently used in a process or formulation, particularly during the purification steps. However, neither the solvent nor the active ingredient in a formulation is directly responsible for the reaction product's composition. Because these ch
... Show MoreZigbee, which has the standard IEEE 802.15.4. It is advisable method to build wireless personal area network (WPAN) which demands a low power consumption that can be produced by Zigbee technique. Our paper gives measuring efficiency of Zigbee involving the Physical Layer (PL) and Media Access Control (MAC) sub-layer , which allow a simple interaction between the sensors. We model and simulate two different scenarios, in the first one, we tested the topological characteristics and performance of the IEEE802.15.4 standard in terms of throughput, node to node delay and figure of routers for three network layouts (Star, Mesh and Cluster Tree) using OPNET simulator. The second scenario investigates the self-healing feature on a mesh
... Show MoreIn this paper, a dynamic investigation is done for strip, rectangular and square machine foundation at the top surface of two-layer dry sand with various states (i.e., loose on medium sand and dense on medium sand). The dynamic investigation is performed numerically using finite element programming, PLAXIS 3D. The soil is expected as a versatile totally plastic material that complies with the Mohr-Coulomb yield criterion. A harmonic load is applied at the base with an amplitude of 6 kPa at a frequency of (2 and 6) Hz, and seismic is applied with acceleration – time input of earthquake hit Halabjah city north of Iraq. A parametric study is done to evaluate the influence of changing L/B ratio (Length=12,6,3 m and width=3 m), type of sand
... Show MoreStability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter “m”, whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of
... Show MoreThis article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show MoreExperiments were conducted to study the behavior of the solid particles (proppant) inside the hydraulic fracture during the formation stimulation, and study the effect of the proppant concentration on the hydraulic fracturing process, which lead to bridge and screen-out conditions inside the fractures across the fracture width that restricts fracturing fluid to flow into the hydraulic fracture. The research also studies the effect of the ratio between the fracture size and the average particles diameter “proppant", on fracture bridging. In this study two ratios were considered β= 2 and 3 ,where β=Dt / Dp where: Dt= hydraulic fracture size (width) and Dp=Average particles diameter.
This work pr
... Show More